IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i5p790-798.html
   My bibliography  Save this article

Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water

Author

Listed:
  • Songsri, P.
  • Jogloy, S.
  • Holbrook, C.C.
  • Kesmala, T.
  • Vorasoot, N.
  • Akkasaeng, C.
  • Patanothai, A.

Abstract

Drought is the major abiotic constraint affecting peanut productivity and quality worldwide. There is a pressing need to improve the water use efficiency (WUE) of rain-fed peanut production. Breeding varieties with higher water use efficiency is seen as providing part of the solution. The objectives of this work were to (i) evaluate genetic variation in WUE, harvest index, root dry weight, specific leaf area (SLA) and SPAD chlorophyll meter reading (SCMR) among peanut genotypes in response to different available soil water levels and (ii) assess the relevance of root dry weight, SLA and SCMR to WUE in peanut under receding soil moisture levels. Two greenhouse experiments were conducted in the dry and rainy seasons in 2002/2003. The 11 peanut genotypes (ICGV 98300, ICGV 98303, ICGV 98305, ICGV 98308, ICGV 98324, ICGV 98330, ICGV 98348, ICGV 98353, Tainan 9, KK 60-3 and Tifton-8) and three soil moisture levels [field capacity (FC), 2/3 available soil water (AW) and 1/3 AW] were laid out in a factorial randomized complete block design (RCBD) with six replications. At 37, 67, and 97 day after sowing (DAS), data were recorded for SLA and SCMR. Root dry weight, harvest index (HI) and WUE were recorded at harvest. Drought reduced WUE, root dry weight and HI. Across both seasons, Tifton-8 and ICGV 98300 had high WUE and also had large root systems under drought conditions. ICGV 98324 and Tifton-8 had low SLA and high SCMR under stressed and non-stressed condition. Under drought conditions, ICGV 98324 had high HI and Tifton-8 had low HI. Root dry weight had a greater contribution to WUE under well-watered and mild drought (2/3 AW). Under severe drought (1/3 AW), SLA showed a more important contribution to WUE than the other traits. Traits that were associated to high WUE under drought conditions were different among different peanut genotypes. ICGV 98300 maintained high root dry weight under 2/3 AW and ICGV 98324 maintained low SLA and high SCMR under 1/3 AW. Tifton-8 had both large root systems and low SLA associated with high WUE.

Suggested Citation

  • Songsri, P. & Jogloy, S. & Holbrook, C.C. & Kesmala, T. & Vorasoot, N. & Akkasaeng, C. & Patanothai, A., 2009. "Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water," Agricultural Water Management, Elsevier, vol. 96(5), pages 790-798, May.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:790-798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00282-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passioura, J. B., 1983. "Roots and drought resistance," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 265-280, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachaputi, Rao C.N. & Sands, Doug & McKenzie, Kerry & Lehane, John & Agius, Peter & Seyoum, Solomon & Peak, Allen, 2019. "Water extraction patterns of mungbean (Vigna radiata) in diverse subtropical environments," Agricultural Water Management, Elsevier, vol. 219(C), pages 109-116.
    2. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr & Srijaranai, Supalax & Holbrook, Corley Carl & Patanothai, Aran, 2015. "Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes," Agricultural Water Management, Elsevier, vol. 152(C), pages 142-150.
    3. Puangbut, D. & Jogloy, S. & Vorasoot, N. & Akkasaeng, C. & Kesmala, T. & Rachaputi, Rao C.N. & Wright, G.C. & Patanothai, A., 2009. "Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought," Agricultural Water Management, Elsevier, vol. 96(10), pages 1460-1466, October.
    4. Yin, Jia De & Zhang, Xu Cheng & Ma, Yi Fan & Yu, Xian Feng & Hou, Hui Zhi & Wang, Hong Li & Fang, Yan Jie, 2022. "Vertical rotary sub-soiling under ridge–furrow with plastic mulching system increased crops yield by efficient use of deep soil moisture and rainfall," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr, 2017. "Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 29-35.
    6. Trentacoste, E.R. & Contreras-Zanessi, O. & Beyá-Marshall, V. & Puertas, C.M., 2018. "Genotypic variation of physiological and morphological traits of seven olive cultivars under sustained and cyclic drought in Mendoza, Argentina," Agricultural Water Management, Elsevier, vol. 196(C), pages 48-56.
    7. Chakma, Remi & Saekong, Pantamit & Biswas, Arindam & Ullah, Hayat & Datta, Avishek, 2021. "Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
    9. Razzaghi, Fatemeh & Plauborg, Finn & Jacobsen, Sven-Erik & Jensen, Christian Richardt & Andersen, Mathias Neumann, 2012. "Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa," Agricultural Water Management, Elsevier, vol. 109(C), pages 20-29.
    10. Mandal, K.G. & Thakur, A.K. & Mohanty, S., 2019. "Paired-row planting and furrow irrigation increased light interception, pod yield and water use efficiency of groundnut in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 968-977.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Rui-Xian & Zhou, Zhi-Guo & Guo, Wen-Qi & Chen, Bing-Lin & Oosterhuis, Derrick M., 2008. "Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants," Agricultural Water Management, Elsevier, vol. 95(11), pages 1261-1270, November.
    2. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    3. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    4. Singh, P. & Aggarwal, P. K. & Bhatia, V. S. & Murty, M. V. R. & Pala, M. & Oweis, T. & Benli, B. & Rao, K. P. C. & Wani, S. P., 2009. "Yield gap analysis: modelling of achievable yields at farm level," IWMI Books, Reports H041995, International Water Management Institute.
    5. Li, Baoru & Zhang, Xiying & Morita, Shigenori & Sekiya, Nobuhito & Araki, Hideki & Gu, Huijie & Han, Jie & Lu, Yang & Liu, Xiuwei, 2022. "Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Segarra, Joel & Kefauver, Shawn C. & Aparicio, Nieves & Serret, Maria Dolors & Araus, José Luis, 2023. "Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: An integrative approach," Agricultural Water Management, Elsevier, vol. 288(C).
    8. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    10. Wu, Yang & Wang, Lichun & Bian, Shaofeng & Liu, Zhiming & Wang, Yongjun & Lv, Yanjie & Cao, Yujun & Yao, Fanyun & Li, Chunxia & Wei, Wenwen, 2019. "Evolution of roots to improve water and nitrogen use efficiency in maize elite inbred lines released during different decades in China," Agricultural Water Management, Elsevier, vol. 216(C), pages 44-59.
    11. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Amarjeet Kumar & Vijay Kumar Singh & Bhagwat Saran & Nadhir Al-Ansari & Vinay Pratap Singh & Sneha Adhikari & Anjali Joshi & Narendra Kumar Singh & Dinesh Kumar Vishwakarma, 2022. "Development of Novel Hybrid Models for Prediction of Drought- and Stress-Tolerance Indices in Teosinte Introgressed Maize Lines Using Artificial Intelligence Techniques," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    13. Liu, Hong-Sheng & Li, Feng-Min & Xu, Hao, 2004. "Deficiency of water can enhance root respiration rate of drought-sensitive but not drought-tolerant spring wheat," Agricultural Water Management, Elsevier, vol. 64(1), pages 41-48, January.
    14. Chairi, Fadia & Elazab, Abdelhalim & Sanchez-Bragado, Rut & Araus, José Luis & Serret, Maria Dolors, 2016. "Heterosis for water status in maize seedlings," Agricultural Water Management, Elsevier, vol. 164(P1), pages 100-109.
    15. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    16. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    17. Ahmadi, Seyed Hamid & Plauborg, Finn & Andersen, Mathias N. & Sepaskhah, Ali Reza & Jensen, Christian R. & Hansen, Søren, 2011. "Effects of irrigation strategies and soils on field grown potatoes: Root distribution," Agricultural Water Management, Elsevier, vol. 98(8), pages 1280-1290, May.
    18. Kumar, R. & Jat, M.K. & Shankar, V., 2013. "Evaluation of modeling of water ecohydrologic dynamics in soil–root system," Ecological Modelling, Elsevier, vol. 269(C), pages 51-60.
    19. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    20. Frank Technow & Carlos D Messina & L Radu Totir & Mark Cooper, 2015. "Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:790-798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.