IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v196y2018icp48-56.html
   My bibliography  Save this article

Genotypic variation of physiological and morphological traits of seven olive cultivars under sustained and cyclic drought in Mendoza, Argentina

Author

Listed:
  • Trentacoste, E.R.
  • Contreras-Zanessi, O.
  • Beyá-Marshall, V.
  • Puertas, C.M.

Abstract

The effects of two deficit irrigation regimes on the physiological, morphological, vegetative, and reproductive traits of seven olive cultivars were studied in a pot experiment. Specific leaf area (SLA) and SPAD chlorophyll meter reading (SCMR) were measured over the experimental period. Their relationships with physiological traits and with each other were also tested. Three-year-old plants in pots were subjected to control regime (CI replaced daily water use), sustained deficit regime (SDI was applied daily at 35% of CI), and five successive drought cycles of 30days followed by rewatering (CDI). In all cultivars, SDI decreased stem water potential compared to CI. Under CDI, stem water potential reached the minimum, ∼–8MPa, but all cultivars recovered to potentials similar to the rewatering period. Stomatal conductance was significantly reduced in both deficit irrigation regimes compared to the control. Rewatering caused a slower recovery of stomatal conductance in ‘Selección Mendoza’, ‘Villalonga’ and ‘Arbequina’ than in the rest of cultivars. Across cultivars, specific leaf area decreased with water deficit, while SCMR increased. Specific leaf area was positively related with stem water potential (R2=0.60), stomatal conductance (R2=0.44) and trunk growth (R2=0.31). In contrast, SCMR values were negatively related with stem water potential (R2=0.59), stomatal conductance (R2=0.52) and trunk growth (R2=0.62). ‘Changlot’, ‘Arauco’ and ‘Nevadillo Blanco’ cultivars maintained lower SLA and higher SCMR under both deficit irrigation regimes and higher stomatal conductance recovery after rewatering. These cultivars also appear to be better adapted to drought prone environments.

Suggested Citation

  • Trentacoste, E.R. & Contreras-Zanessi, O. & Beyá-Marshall, V. & Puertas, C.M., 2018. "Genotypic variation of physiological and morphological traits of seven olive cultivars under sustained and cyclic drought in Mendoza, Argentina," Agricultural Water Management, Elsevier, vol. 196(C), pages 48-56.
  • Handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:48-56
    DOI: 10.1016/j.agwat.2017.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
    2. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.
    3. Livellara, N. & Saavedra, F. & Salgado, E., 2011. "Plant based indicators for irrigation scheduling in young cherry trees," Agricultural Water Management, Elsevier, vol. 98(4), pages 684-690, February.
    4. Songsri, P. & Jogloy, S. & Holbrook, C.C. & Kesmala, T. & Vorasoot, N. & Akkasaeng, C. & Patanothai, A., 2009. "Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water," Agricultural Water Management, Elsevier, vol. 96(5), pages 790-798, May.
    5. Puangbut, D. & Jogloy, S. & Vorasoot, N. & Akkasaeng, C. & Kesmala, T. & Rachaputi, Rao C.N. & Wright, G.C. & Patanothai, A., 2009. "Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought," Agricultural Water Management, Elsevier, vol. 96(10), pages 1460-1466, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia-Maria Nteve & Stefanos Kostas & Alexios N. Polidoros & Panagiotis Madesis & Irini Nianiou-Obeidat, 2024. "Adaptation Mechanisms of Olive Tree under Drought Stress: The Potential of Modern Omics Approaches," Agriculture, MDPI, vol. 14(4), pages 1-18, April.
    2. Trabelsi, Lina & Gargouri, Kamel & Ben Hassena, Ameni & Mbadra, Chaker & Ghrab, Mohamed & Ncube, Bhekumthetho & Van Staden, Johannes & Gargouri, Radhia, 2019. "Impact of drought and salinity on olive water status and physiological performance in an arid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 749-759.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Mandal, K.G. & Thakur, A.K. & Mohanty, S., 2019. "Paired-row planting and furrow irrigation increased light interception, pod yield and water use efficiency of groundnut in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 968-977.
    3. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr, 2017. "Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 29-35.
    4. Correa-Tedesco, Guillermo & Rousseaux, M. Cecilia & Searles, Peter S., 2010. "Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 97(11), pages 1829-1837, November.
    5. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    6. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr & Srijaranai, Supalax & Holbrook, Corley Carl & Patanothai, Aran, 2015. "Variation of inulin content, inulin yield and water use efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes," Agricultural Water Management, Elsevier, vol. 152(C), pages 142-150.
    7. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: Water use, fruit and oil yield," Agricultural Water Management, Elsevier, vol. 98(6), pages 950-958, April.
    8. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    9. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    11. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    12. Dabbou, Samia & Chehab, Hechmi & Faten, Brahmi & Dabbou, Sihem & Esposto, Sonia & Selvaggini, Roberto & Taticchi, Agnese & Servili, Maurizio & Montedoro, Gian Francesco & Hammami, Mohamed, 2010. "Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions," Agricultural Water Management, Elsevier, vol. 97(5), pages 763-768, May.
    13. Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.
    14. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    15. Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
    16. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    17. Vera-Repullo, J.A. & Ruiz-Peñalver, L. & Jiménez-Buendía, M. & Rosillo, J.J. & Molina-Martínez, J.M., 2015. "Software for the automatic control of irrigation using weighing-drainage lysimeters," Agricultural Water Management, Elsevier, vol. 151(C), pages 4-12.
    18. Hueso, A. & Trentacoste, E.R. & Junquera, P. & Gómez-Miguel, V. & Gómez-del-Campo, M., 2019. "Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Sofiene B. M. Hammami & Manel Ben Laya & Narjes Baazaoui & Besma Sghaier-Hammami, 2022. "Vegetative Growth Dynamic and Its Impact on the Flowering Intensity of the Following Season Depend on Water Availability and Bearing Status of the Olive Tree," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    20. Pierantozzi, P. & Torres, M. & Tivani, M. & Contreras, C. & Gentili, L. & Parera, C. & Maestri, D., 2020. "Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters," Agricultural Water Management, Elsevier, vol. 238(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:48-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.