IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v288y2023ics0378377423003529.html
   My bibliography  Save this article

Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: An integrative approach

Author

Listed:
  • Rezzouk, Fatima Zahra
  • Gracia-Romero, Adrian
  • Segarra, Joel
  • Kefauver, Shawn C.
  • Aparicio, Nieves
  • Serret, Maria Dolors
  • Araus, José Luis

Abstract

Crop performance is very dependent on roots because they determine the capture of water and nutrients, and the crop’s subsequent growth and productivity. Durum wheat is a major crop in the Mediterranean region, where water and nitrogen availability limit its productivity. Therefore, the focus of this study was to uncover the response of root and shoot traits in durum wheat to different Mediterranean growing conditions and how they relate to better growth and yield performance. For this purpose, crop performance was evaluated in a set of modern durum wheat cultivars grown during four consecutive seasons and under contrasting water regimes, temperatures and nitrogen supplies, totalling 12 different growing conditions. Grain yield, biomass, other crop-growth traits (plant height, PH, and the Normalised Difference Vegetation Index, NDVI), together with physiological indicators of water (carbon isotope composition, δ13C, and canopy temperature depression, CTD) and nitrogen (nitrogen isotope composition, δ15N, and grain nitrogen yield, GNY) status were assessed. In addition, root architecture and distribution were measured using shovelomics and soil coring, and the provenance of the water captured by roots was determined by comparing the oxygen (δ18O) and hydrogen (δ2H) isotope compositions of water at the base of the stem, with water in different soil sections. Water and nitrogen status indicators combined with shovelomic traits allowed development of yield-prediction models. while higher yields were associated in most cases with better water status, root architecture was very responsive to different growing conditions. Overall, genotypes better adapted to rainfed conditions exhibited roots favouring deeper water extraction, whereas under support irrigation, the root system enabled water extraction from the topsoil as from deeper soil sections. Our study also highlights the limitation of shovelomics and soil coring as phenotyping approaches and proposes the δ18O of stem water as a promising functional phenotypic approach.

Suggested Citation

  • Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Segarra, Joel & Kefauver, Shawn C. & Aparicio, Nieves & Serret, Maria Dolors & Araus, José Luis, 2023. "Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: An integrative approach," Agricultural Water Management, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003529
    DOI: 10.1016/j.agwat.2023.108487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passioura, J. B., 1983. "Roots and drought resistance," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 265-280, September.
    2. J. Haberle & P. Svoboda & I. Raimanová, 2008. "The effect of post-anthesis water supply on grain nitrogen concentration and grain nitrogen Šeld of winter wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 54(7), pages 304-312.
    3. Rezzouk, Fatima Zahra & Gracia-Romero, Adrian & Kefauver, Shawn C. & Nieto-Taladriz, Maria Teresa & Serret, Maria Dolores & Araus, José Luis, 2022. "Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinghua & Liu, Xin, 2010. "A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China," Agricultural Water Management, Elsevier, vol. 97(3), pages 475-482, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Rui-Xian & Zhou, Zhi-Guo & Guo, Wen-Qi & Chen, Bing-Lin & Oosterhuis, Derrick M., 2008. "Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants," Agricultural Water Management, Elsevier, vol. 95(11), pages 1261-1270, November.
    2. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    5. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    6. Singh, P. & Aggarwal, P. K. & Bhatia, V. S. & Murty, M. V. R. & Pala, M. & Oweis, T. & Benli, B. & Rao, K. P. C. & Wani, S. P., 2009. "Yield gap analysis: modelling of achievable yields at farm level," IWMI Books, Reports H041995, International Water Management Institute.
    7. L. Růžek & M. Růžková & K. Voříšek & J. Kubát & M. Friedlová & O. Mikanová, 2009. "Chemical and microbiological characterization of Cambisols, Luvisols and Stagnosols," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(6), pages 231-237.
    8. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
    9. Li, Baoru & Zhang, Xiying & Morita, Shigenori & Sekiya, Nobuhito & Araki, Hideki & Gu, Huijie & Han, Jie & Lu, Yang & Liu, Xiuwei, 2022. "Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    12. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
    13. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    14. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Li, Pingfeng & Cao, Xiaoqing & Tan, Huang & Wang, Jiahang & Ren, Shumei & Yang, Peiling, 2020. "Studies on water uptake and heat status of cherry root under water-saving measures," Agricultural Water Management, Elsevier, vol. 242(C).
    16. Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
    17. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    18. A. Madani & A. Shirani-Rad & A. Pazoki & G. Nourmohammadi & R. Zarghami & A. Mokhtassi-Bidgoli, 2010. "The impact of source or sink limitations on yield formation of winter wheat (Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(5), pages 218-227.
    19. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    20. Wu, Yang & Wang, Lichun & Bian, Shaofeng & Liu, Zhiming & Wang, Yongjun & Lv, Yanjie & Cao, Yujun & Yao, Fanyun & Li, Chunxia & Wei, Wenwen, 2019. "Evolution of roots to improve water and nitrogen use efficiency in maize elite inbred lines released during different decades in China," Agricultural Water Management, Elsevier, vol. 216(C), pages 44-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.