IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i10p1180-1188.html
   My bibliography  Save this article

Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China

Author

Listed:
  • Hu, Kelin
  • Li, Baoguo
  • Chen, Deli
  • Zhang, Yuanpei
  • Edis, Robert

Abstract

Water scarcity and nitrate contamination in groundwater are serious problems in desert oases in Northwest China. Field and 15N microplot experiments with traditional and improved water and nitrogen management were conducted in a desert oasis in Inner Mongolia Autonomous Region. Water movement, nitrogen transport and crop growth were simulated by the soil-plant system with water and solute transport model (SPWS). The model simulation results, including the water content and nitrate concentration in the soil profile, leaf area index, dry matter weight, crop N uptake and grain yield, were all in good agreement with the field measurements. The water and nitrogen use efficiency of the improved treatment were better than those of the traditional treatment. The water and nitrogen use efficiency under the traditional treatment were 2.0 kg m-3 and 21 kg kg-1, respectively, while under the improved treatment, they were 2.2 kg m-3 and 26 kg kg-1, respectively. Water drainage accounted for 24-35% of total water input (rainfall and irrigation) for the two treatments. Nitrogen loss by ammonia volatilization and denitrification was less than 5% of the total N input (including the N comes from irrigation). However, 32-61% of total nitrogen input was lost through nitrate leaching, which agreed with the 15N isotopic result. It is impetrative to improve the water and nitrogen management in the desert oasis.

Suggested Citation

  • Hu, Kelin & Li, Baoguo & Chen, Deli & Zhang, Yuanpei & Edis, Robert, 2008. "Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 95(10), pages 1180-1188, October.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:10:p:1180-1188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00114-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ducheyne, S. & Schadeck, N. & Vanongeval, L. & Vandendriessche, H. & Feyen, J., 2001. "Assessment of the parameters of a mechanistic soil-crop-nitrogen simulation model using historic data of experimental field sites in Belgium," Agricultural Water Management, Elsevier, vol. 51(1), pages 53-78, October.
    2. Li, Xiaoxin & Hu, Chunsheng & Delgado, Jorge A. & Zhang, Yuming & Ouyang, Zhiyun, 2007. "Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 137-147, April.
    3. Hu, Kelin & White, Robert & Chen, Deli & Li, Baoguo & Li, Weidong, 2007. "Stochastic simulation of water drainage at the field scale and its application to irrigation management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 123-130, April.
    4. Li, Yong & White, Robert & Chen, Deli & Zhang, Jiabao & Li, Baoguo & Zhang, Yuming & Huang, Yuanfang & Edis, Robert, 2007. "A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain," Ecological Modelling, Elsevier, vol. 203(3), pages 395-423.
    5. Cameira, M.R. & Fernando, R.M. & Ahuja, L.R. & Ma, L., 2007. "Using RZWQM to simulate the fate of nitrogen in field soil-crop environment in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 121-136, May.
    6. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    2. Liang, Hao & Hu, Kelin & Batchelor, William D. & Qin, Wei & Li, Baoguo, 2018. "Developing a water and nitrogen management model for greenhouse vegetable production in China: Sensitivity analysis and evaluation," Ecological Modelling, Elsevier, vol. 367(C), pages 24-33.
    3. Tan, Deshui & Jiang, Lihua & Tan, Shuying & Zheng, Fuli & Xu, Yu & Cui, Rongzong & Wang, Mei & Shi, Jing & Li, Guosheng & Liu, Zhaohui, 2013. "An in situ study of inorganic nitrogen flow under different fertilization treatments on a wheat–maize rotation system surrounding Nansi Lake, China," Agricultural Water Management, Elsevier, vol. 123(C), pages 45-54.
    4. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    5. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Malone, Sparkle L. & Alam, Md. Khairul & Loescher, Henry W. & Bazzaz, Mahfuz, 2020. "Alternate furrow irrigation can maintain grain yield and nutrient content, and increase crop water productivity in dry season maize in sub-tropical climate of South Asia," Agricultural Water Management, Elsevier, vol. 238(C).
    6. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    7. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Ahmed, Zeeshan & Zhang, Bo & Iqbal, Hassan & Xue, Jie, 2019. "Nitrogen leaching, recovery efficiency, and cotton productivity assessments on desert-sandy soil under various application methods," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Mohamadzade, Fahime & Gheysari, Mahdi & Eshghizadeh, Hamidreza & Tabatabaei, Mahsa Sadat & Hoogenboom, Gerrit, 2022. "The effect of water and nitrogen on drip tape irrigated silage maize grown under arid conditions: Experimental and simulations," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    10. Wei, Yongping & White, Robert & Hu, Kelin & Willett, Ian, 2010. "Valuing the environmental externalities of oasis farming in Left Banner, Alxa, China," Ecological Economics, Elsevier, vol. 69(11), pages 2151-2157, September.
    11. Huanyuan Wang & Baoguo Li & Liang Jin & Kelin Hu, 2020. "Exploring a Sustainable Cropping System in the North China Plain Using a Modelling Approach," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    12. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    13. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    14. Wei, Yongping & Chen, Deli & Hu, Kelin & Willett, Ian R. & Langford, John, 2009. "Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 96(7), pages 1114-1119, July.
    15. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.
    16. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    17. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanyuan Wang & Baoguo Li & Liang Jin & Kelin Hu, 2020. "Exploring a Sustainable Cropping System in the North China Plain Using a Modelling Approach," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    2. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    3. Jiao Liu & Faguang Lu & Yiming Zhu & Hao Wu & Irshad Ahmad & Guichun Dong & Guisheng Zhou & Yanqing Wu, 2024. "The Effects of Planting Density and Nitrogen Application on the Growth Quality of Alfalfa Forage in Saline Soils," Agriculture, MDPI, vol. 14(2), pages 1-22, February.
    4. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    5. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    6. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Cameira, M.R. & Rolim, João & Valente, Fernanda & Faro, Afonso & Dragosits, Ulrike & Cordovil, Cláudia M.d.S., 2019. "Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal – Implications for effectiveness of mitigation measures," Land Use Policy, Elsevier, vol. 84(C), pages 278-293.
    8. Wei, Yongping & White, Robert & Hu, Kelin & Willett, Ian, 2010. "Valuing the environmental externalities of oasis farming in Left Banner, Alxa, China," Ecological Economics, Elsevier, vol. 69(11), pages 2151-2157, September.
    9. Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
    10. Anik, Asif Reza & Eory, Vera & Begho, Toritseju & Rahman, Md. Mizanur, 2023. "Determinants of nitrogen use efficiency and gaseous emissions assessed from farm survey: A case of wheat in Bangladesh," Agricultural Systems, Elsevier, vol. 206(C).
    11. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    13. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    14. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    15. Mati, Rastislav & Kotorová, Dana & Gombos, Milan & Kandra, Branislav, 2011. "Development of evapotranspiration and water supply of clay-loamy soil on the East Slovak Lowland," Agricultural Water Management, Elsevier, vol. 98(7), pages 1133-1140, May.
    16. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    17. Zhang, Hongyuan & Batchelor, William D. & Hu, Kelin & Liang, Hao & Han, Hui & Li, Ji, 2022. "Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China," Ecological Modelling, Elsevier, vol. 470(C).
    18. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    19. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    20. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:10:p:1180-1188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.