IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v87y2007i2p151-161.html
   My bibliography  Save this article

Determining crop-water production functions using yield-irrigation gradient algorithms

Author

Listed:
  • Brumbelow, Kelly
  • Georgakakos, Aris

Abstract

No abstract is available for this item.

Suggested Citation

  • Brumbelow, Kelly & Georgakakos, Aris, 2007. "Determining crop-water production functions using yield-irrigation gradient algorithms," Agricultural Water Management, Elsevier, vol. 87(2), pages 151-161, January.
  • Handle: RePEc:eee:agiwat:v:87:y:2007:i:2:p:151-161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00201-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Mugabe, F. T. & Nyakatawa, E. Z., 2000. "Effect of deficit irrigation on wheat and opportunities of growing wheat on residual soil moisture in southeast Zimbabwe," Agricultural Water Management, Elsevier, vol. 46(2), pages 111-119, December.
    3. Epperson, James E. & Hook, James E. & Mustafa, Yasmin R., 1993. "Dynamic programming for improving irrigation scheduling strategies of maize," Agricultural Systems, Elsevier, vol. 42(1-2), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bangbang & Feng, Gary & Ahuja, Lajpat R. & Kong, Xiangbin & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2018. "Soybean crop-water production functions in a humid region across years and soils determined with APEX model," Agricultural Water Management, Elsevier, vol. 204(C), pages 180-191.
    2. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    3. Zhang, Chenglong & Guo, Ping, 2018. "FLFP: A fuzzy linear fractional programming approach with double-sided fuzziness for optimal irrigation water allocation," Agricultural Water Management, Elsevier, vol. 199(C), pages 105-119.
    4. Ramos, T.B. & Gonalves, M.C. & Castanheira, N.L. & Martins, J.C. & Santos, F.L. & Prazeres, A. & Fernandes, M.L., 2009. "Effect of sodium and nitrogen on yield function of irrigated maize in southern Portugal," Agricultural Water Management, Elsevier, vol. 96(4), pages 585-594, April.
    5. Zhang, Chenglong & Guo, Ping & Huo, Zailin, 2021. "Irrigation water resources management under uncertainty: An interval nonlinear double-sided fuzzy chance-constrained programming approach," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    2. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    3. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    4. Bergez, J. -E. & Garcia, F. & Lapasse, L., 2004. "A hierarchical partitioning method for optimizing irrigation strategies," Agricultural Systems, Elsevier, vol. 80(3), pages 235-253, June.
    5. Liu, Jianchao & Feng, Hao & He, Jianqiang & Chen, Haixin & Ding, Dianyuan, 2018. "The effects of nitrogen and water stresses on the nitrogen-to-protein conversion factor of winter wheat," Agricultural Water Management, Elsevier, vol. 210(C), pages 217-223.
    6. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    7. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    8. Amir Tabarzad & Ali Asghar Ghaemi & Shahrokh Zand-parsa, 2016. "Barley Grain Yield and Protein Content Response to Deficit Irrigation and Sowing Dates in Semi-Arid Region," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 193-193, October.
    9. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    10. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    12. Oktem, Abdullah & Simsek, Mehmet & Oktem, A. Gulgun, 2003. "Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship," Agricultural Water Management, Elsevier, vol. 61(1), pages 63-74, June.
    13. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    14. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    15. Dalton, Timothy J. & Porter, Gregory A. & Winslow, Noah G., 2004. "Risk Management Strategies in Humid Production Regions: A Comparison of Supplemental Irrigation and Crop Insurance," Agricultural and Resource Economics Review, Cambridge University Press, vol. 33(2), pages 220-232, October.
    16. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    17. Ilbeyi, Adem & Ustun, Haluk & Oweis, Theib & Pala, Mustafa & Benli, Bogachan, 2006. "Wheat water productivity and yield in a cool highland environment: Effect of early sowing with supplemental irrigation," Agricultural Water Management, Elsevier, vol. 82(3), pages 399-410, April.
    18. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    19. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    20. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:87:y:2007:i:2:p:151-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.