IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001349.html
   My bibliography  Save this article

Night transpiration of peanut affects interspecific water complementarity and use efficiency in maize/peanut intercropping

Author

Listed:
  • Sun, Tianran
  • Sun, Zhanxiang
  • Zhang, Zhe
  • Zhang, Yue
  • Guo, Yajiaoxue
  • Zhang, Jinyu
  • Nie, Jiayi
  • Dong, Zhi
  • Zhang, Zeshan
  • Zhang, Chenjia
  • Zhang, Xu
  • Feng, Chen
  • Zhang, Lizhen

Abstract

Interspecific competition for soil water between species in intercropping is critical for understanding the mechanism of resource use and overyielding in a mixture cropping system, however, it is difficult to measure plant transpiration because of lacking direct and precise measuring methods. In this study, we aim to directly measure plant transpiration of each species using sap flow meters with the heat ratio method (HRM) and to explore the interspecific interactions in water use in intercropping. The experiment was conducted in 2021–2023 under semiarid rainfed conditions in Liaoning province, China. Three treatments were compared, i.e. sole maize, sole peanut, and maize/peanut intercropping with 2 maize rows maize and 4 rows peanut. The total transpiration (TTr) of intercropped maize was 53.5 % lower than that of monocropped maize; however, considering the land use proportion of maize in the intercropping (33 %), intercropped maize plants increased TTr by 39.5 %. The water productivity (WP), defined as the above ground dry matter produced by unit crop transpiration, for intercropped maize (8.04 g m−2 mm−1) was 43.9 % higher than that for the monoculture (5.60 g m−2 mm−1), due to its strong competitive ability for soil water, resulting from the border row effects in the intercropping. The average dry matter of intercropping maize was 1497 g m−2, which was 13.6 % higher than that of mono-cropping maize. For intercropped peanut, the TTr was 165 % of that in monocropped peanut, which was 148 % higher than the expected (67 %, land use proportion of peanut), which was probably due to a night transpiration in understory crops. The night sap velocity of intercropped peanut was 9.62 cm h−1 over three years (2021–2023), while the night sap flow of dominant species maize and sole peanut were close to zero. The WP of intercropped peanut (2.75 g m−2 mm−1) was 35.6 % lower than that of the monoculture (4.27 g m−2 mm−1). Intercropping increased maize transpiration and produced more above ground dry matter. However, it reduced peanut growth and caused more nighttime transpiration, likely due to changes in microclimate conditions. Our study provides a useful information to understand the mechanism of interspecific affiliations in water use in mixing cropping systems and helps farmers to optimize agronomy managements of intercrops. The results could also contribute to the improvements for evapotranspiration simulation models.

Suggested Citation

  • Sun, Tianran & Sun, Zhanxiang & Zhang, Zhe & Zhang, Yue & Guo, Yajiaoxue & Zhang, Jinyu & Nie, Jiayi & Dong, Zhi & Zhang, Zeshan & Zhang, Chenjia & Zhang, Xu & Feng, Chen & Zhang, Lizhen, 2025. "Night transpiration of peanut affects interspecific water complementarity and use efficiency in maize/peanut intercropping," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001349
    DOI: 10.1016/j.agwat.2025.109420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kamphorst, Samuel Henrique & Amaral Júnior, Antônio Teixeira do & Vergara-Diaz, Omar & Gracia-Romero, Adrian & Fernandez-Gallego, Jose A. & Chang-Espino, Melissa Carolina & Buchaillot, Maria Luisa & R, 2022. "Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Mugi-Ngenga, E. & Bastiaans, L. & Anten, N.P.R. & Zingore, S. & Baijukya, F. & Giller, K.E., 2023. "The role of inter-specific competition for water in maize-legume intercropping systems in northern Tanzania," Agricultural Systems, Elsevier, vol. 207(C).
    3. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    4. Hernández, M.D. & Alfonso, C. & Echarte, M.M. & Cerrudo, A. & Echarte, L., 2021. "Maize transpiration efficiency increases with N supply or higher plant densities," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Yin, Wen & Chai, Qiang & Zhao, Cai & Yu, Aizhong & Fan, Zhilong & Hu, Falong & Fan, Hong & Guo, Yao & Coulter, Jeffrey A., 2020. "Water utilization in intercropping: A review," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    7. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    8. Chen, Yongfan & Zhang, Zeshan & Wang, Xuejiao & Sun, Shuai & Zhang, Yutong & Wang, Sen & Yang, Mingfeng & Ji, Fen & Ji, Chunrong & Xiang, Dao & Zha, Tianshan & Zhang, Lizhen, 2022. "Sap velocity, transpiration and water use efficiency of drip-irrigated cotton in response to chemical topping and row spacing," Agricultural Water Management, Elsevier, vol. 267(C).
    9. Wei, Wenwen & Liu, Tingting & Zhang, Shuai & Shen, Lei & Wang, Xiuyuan & Li, Luhua & Zhu, Yun & Zhang, Wei, 2024. "Root spatial distribution and belowground competition in an apple/ryegrass agroforestry system," Agricultural Systems, Elsevier, vol. 215(C).
    10. Capurro, Maria C. & Ham, Jay M. & Kluitenberg, Gerard J. & Comas, Louise & Andales, Allan A., 2024. "A novel sap flow system to measure maize transpiration using a heat pulse method," Agricultural Water Management, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hanting & Wang, Guocui & Hu, Falong & Fan, Zhilong & Yin, Wen & Cao, Weidong & Chai, Qiang & Yao, Tuo, 2025. "Additive intercropping green manure enhances maize water productivity through water competition and compensation under reduced nitrogen fertilizer application," Agricultural Water Management, Elsevier, vol. 311(C).
    2. Qinqin Xu & Kangning Xiong & Yongkuan Chi & Shuzhen Song, 2021. "Effects of Crop and Grass Intercropping on the Soil Environment in the Karst Area," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    3. Tshering Choden & Bhim Bahadur Ghaley, 2021. "A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe and North Africa," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    4. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    5. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    6. Wenwen Wei & Tingting Liu & Lei Shen & Xiuyuan Wang & Shuai Zhang & Wei Zhang, 2022. "Effect of Maize ( Zeal mays ) and Soybean ( Glycine max ) Intercropping on Yield and Root Development in Xinjiang, China," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    7. Qin, Shujing & Li, Sien & Cheng, Lei & Zhang, Lu & Qiu, Rangjian & Liu, Pan & Xi, Haiyang, 2023. "Partitioning evapotranspiration in partially mulched interplanted croplands by improving the Shuttleworth-Wallace model," Agricultural Water Management, Elsevier, vol. 276(C).
    8. El Hajj, Marcel M. & Johansen, Kasper & Almashharawi, Samer K. & McCabe, Matthew F., 2023. "Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Jurečka, František & Fischer, Milan & Hlavinka, Petr & Balek, Jan & Semerádová, Daniela & Bláhová, Monika & Anderson, Martha C. & Hain, Christopher & Žalud, Zdeněk & Trnka, Miroslav, 2021. "Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2021. "Effects of mulch and irrigation regimes on water distribution and root competition in an apple–soybean intercropping system in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 246(C).
    11. Liu, Ziqi & Li, Kaiping & Xiong, Kangning & Li, Yuan & Wang, Jin & Sun, Jian & Cai, Lulu, 2021. "Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area," Agricultural Water Management, Elsevier, vol. 257(C).
    12. Holzkämper, Annelie, 2020. "Varietal adaptations matter for agricultural water use – a simulation study on grain maize in Western Switzerland," Agricultural Water Management, Elsevier, vol. 237(C).
    13. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    14. Bruno, Ilaria & Mania, Ilaria & Lovera, Matteo & Brondino, Luca & Peano, Cristiana, 2025. "Vegetation-based Ecological Functions Sustainability Index (VEFSI) for optimizing ecosystem services in orchards," Agricultural Systems, Elsevier, vol. 223(C).
    15. Wang, Wei & Li, Meng-Ying & Gong, Dong-Shan & Zhou, Rui & Khan, Aziz & Zhu, Ying & Zhu, Hao & Abrar, Muhammad & Zhu, Shuang-Guo & Wang, Bao-Zhong & Song, Chao & Xiong, You-Cai, 2022. "Water use of intercropped species: Maize-soybean, soybean-wheat and wheat-maize," Agricultural Water Management, Elsevier, vol. 269(C).
    16. García-León, David & Contreras, Sergio & Hunink, Johannes, 2019. "Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals," Agricultural Water Management, Elsevier, vol. 213(C), pages 388-396.
    17. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    18. Li, Yanjie & Li, Zhijie & Gong, Ping & He, Xinlin & Liu, Hongguang & Li, Ling & Wang, Chunxia & Li, Pengfei & Wei, Jie & Yu, Xuyong, 2024. "Enhanced irrigation volume reduces salinity and improves deep root zone soil nutrients, phosphatase activity and changes root traits of fruit trees," Agricultural Water Management, Elsevier, vol. 302(C).
    19. Lai, Zhenlin & Fan, Junliang & Yang, Rui & Xu, Xinyu & Liu, Lanjiao & Li, Sien & Zhang, Fucang & Li, Zhijun, 2022. "Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2022. "Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 266(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.