IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics037837742100648x.html
   My bibliography  Save this article

Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions

Author

Listed:
  • Kamphorst, Samuel Henrique
  • Amaral Júnior, Antônio Teixeira do
  • Vergara-Diaz, Omar
  • Gracia-Romero, Adrian
  • Fernandez-Gallego, Jose A.
  • Chang-Espino, Melissa Carolina
  • Buchaillot, Maria Luisa
  • Rezzouk, Fatima Zahra
  • Lima, Valter Jário de
  • Serret, Maria Dolores
  • Ortega, Jose Luis Araus

Abstract

In spite of the benefits of heterosis in maize breeding, little is known about the physiological mechanisms of this phenomenon and its genetic control under different water regimes. This study aimed to understand the heterosis effects on plant growth, the photosynthetic and transpiration traits, and the root traits of four inbred popcorn lines and their hybrids, including their reciprocal combinations. Plants were grown in lysimeters, inside a rain shelter, under two water conditions (water stress – WS; well-watered – WW) until anthesis. Plant growth traits included shoot biomass, plant height, and leaf area. Photosynthetic traits comprised leaf pigment and total nitrogen content, chlorophyll fluorescence, gas exchange, water use efficiency and stomatal index and density, along with the stable carbon (δ13C) and nitrogen (δ15N) isotope compositions of the last developed leaf. Root weight density and specific root length were also recorded. Greater heterosis effects were observed for traits related to plant growth and root weight density, and specifically under WS. Traits related to root weight density in deeper soil layers benefited markedly from heterosis, but there were no advantages in terms of stomatal conductance and water status in general. Apparently, only δ13C supported a better water status under WS, and was observed in the hybrids in particular. Non-additive gene effects were predominant in controlling of most of the growth and root traits studied, supporting the conclusion that the heterosis effect is especially favorable under water-limiting conditions. Moreover, the choice of the female parent is essential for traits related to gas exchange when breeding for better resilience to drought.

Suggested Citation

  • Kamphorst, Samuel Henrique & Amaral Júnior, Antônio Teixeira do & Vergara-Diaz, Omar & Gracia-Romero, Adrian & Fernandez-Gallego, Jose A. & Chang-Espino, Melissa Carolina & Buchaillot, Maria Luisa & R, 2022. "Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s037837742100648x
    DOI: 10.1016/j.agwat.2021.107371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100648X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Chairi, Fadia & Elazab, Abdelhalim & Sanchez-Bragado, Rut & Araus, José Luis & Serret, Maria Dolors, 2016. "Heterosis for water status in maize seedlings," Agricultural Water Management, Elsevier, vol. 164(P1), pages 100-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Yaqian Zong & Chao Xu & Kai Zhou & Xinhui Duan & Bo Han & Chenggang He & Hua Jiang, . "Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    3. Xingyang Song & Guangsheng Zhou & Qijin He, 2021. "Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    4. Sun, Xutong & Lv, Aimin & Chen, Dandan & Zhang, Zili & Wang, Xuming & Zhou, Aicun & Xu, Xiaowei & Shao, Qingsong & Zheng, Ying, 2023. "Exogenous spermidine enhanced the water deficit tolerance of Anoectochilus roxburghii by modulating plant antioxidant enzymes and polyamine metabolism," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Yaqian Zong & Chao Xu & Kai Zhou & Xinhui Duan & Bo Han & Chenggang He & Hua Jiang, 2023. "Effects of exogenous ascorbic acid on photosynthesis and xanthophyll cycle in alfalfa (Medicago sativa L.) under drought and heat stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(11), pages 487-499.
    6. Lei Wang & Baizhao Ren & Bin Zhao & Peng Liu & Jiwang Zhang, 2022. "Comparative Yield and Photosynthetic Characteristics of Two Corn ( Zea mays L.) Hybrids Differing in Maturity under Different Irrigation Treatments," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    7. Xiaowen Lin & Xiaodong Wu & Zhenni Gao & Xuguang Ge & Jiale Xiong & Lingxiao Tan & Hongxu Wei, 2022. "The Effects of Water Depth on the Growth of Two Emergent Plants in an In-Situ Experiment," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    8. Li, Yang & Yuan, Lin & Cao, Hao-Bing & Tang, Chen-Dong & Wang, Xian-Ye & Tian, Bo & Dou, Shen-Tang & Zhang, Li-Quan & Shen, Jian, 2021. "A dynamic biomass model of emergent aquatic vegetation under different water levels and salinity," Ecological Modelling, Elsevier, vol. 440(C).
    9. Tianpeng Gao & Haoming Wang & Changming Li & Mingbo Zuo & Xueying Wang & Yuan Liu & Yingli Yang & Danghui Xu & Yubing Liu & Xiangwen Fang, 2022. "Effects of Heavy Metal Stress on Physiology, Hydraulics, and Anatomy of Three Desert Plants in the Jinchang Mining Area, China," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    10. Yuan, Xin & Jiao, Liang & Che, Xichen & Wu, Jingjing & Zhu, Xuli & Li, Qian, 2024. "Study on the water-carbon coupling coordination function on the eastern edge of the Qinghai-Tibet plateau," Ecological Modelling, Elsevier, vol. 487(C).
    11. Shoukun Dong & Xinyu Zhou & Zhipeng Qu & Xiyue Wang, 2023. "Effects of drought stress at different stages on soluble sugar content of soybeans," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(11), pages 500-511.
    12. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s037837742100648x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.