IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v309y2025ics0378377425000186.html
   My bibliography  Save this article

Assessing the impacts of shifting planting dates on crop yields and irrigation demand under warming scenarios in Alberta, Canada

Author

Listed:
  • Zhao, Qi
  • Wu, Lina
  • Huo, Fei
  • Li, Zhenhua
  • Li, Yanping

Abstract

Understanding the impacts of climate change on crop production and irrigation water demand is crucial for adapting to global warming. This study evaluated the effects of shifting planting dates on irrigated and rainfed crop yields and irrigation water demand under the latest Shared Socio-economic Pathways (SSPs) climate scenarios using the AquaCrop-OS model in Alberta, Canada. The results indicate: (1) climate change generally benefits irrigated crop yields while reducing rainfed yields under low mitigation scenarios (SSP585 and SSP370). (2) The impacts of planting date shifts on crop yields vary spatially and temporally across different SSPs. Early planting improves both rainfed and irrigated crop yields and reduces irrigation water demand under SSP585 in the latter half of the 21st Century, suggesting it is a viable strategy for mitigating heat and water stress in agricultural systems. However, this strategy does not guarantee yield increases under other SSPs. (3) The irrigated yields of spring wheat and canola are expected to increase under all scenarios, while rainfed yields decline under SSP585 and SSP370, with only marginal increases under SSP126. Annual irrigation demand will increase in the future, with the monthly irrigation peak occurring earlier. The most irrigation demand is under SSP585, followed by SSP370 and SSP126. (4) Early planting results in reduced irrigation water demand.

Suggested Citation

  • Zhao, Qi & Wu, Lina & Huo, Fei & Li, Zhenhua & Li, Yanping, 2025. "Assessing the impacts of shifting planting dates on crop yields and irrigation demand under warming scenarios in Alberta, Canada," Agricultural Water Management, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000186
    DOI: 10.1016/j.agwat.2025.109304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Enli Wang & Di He & Jing Wang & Julianne M. Lilley & Brendan Christy & Munir P. Hoffmann & Garry O’Leary & Jerry L. Hatfield & Luigi Ledda & Paola A. Deligios & Brian Grant & Qi Jing & Claas Nendel & , 2022. "How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
    2. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    3. Acharjee, Tapos Kumar & van Halsema, Gerardo & Ludwig, Fulco & Hellegers, Petra & Supit, Iwan, 2019. "Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use," Agricultural Systems, Elsevier, vol. 168(C), pages 131-143.
    4. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Ahmad Zeeshan Bhatti & Aitazaz Ahsan Farooque & Nicholas Krouglicof & Qing Li & Wayne Peters & Farhat Abbas & Bishnu Acharya, 2021. "An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    6. Zahidul Islam & Thian Gan, 2015. "Future Irrigation Demand of South Saskatchewan River Basin under the Combined Impacts of Climate Change and El Niño Southern Oscillation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2091-2105, April.
    7. Getachew, Fikadu & Bayabil, Haimanote K. & Hoogenboom, Gerrit & Teshome, Fitsum T. & Zewdu, Eshetu, 2021. "Irrigation and shifting planting date as climate change adaptation strategies for sorghum," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    9. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    10. Kang, Xiaoyu & Qi, Junyu & Li, Sheng & Meng, Fan-Rui, 2022. "A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Wei Lu & Wiktor Adamowicz & Scott R. Jeffrey & Greg G. Goss & Monireh Faramarzi, 2018. "Crop Yield Response to Climate Variables on Dryland versus Irrigated Lands," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(2), pages 283-303, June.
    12. David Haro-Monteagudo & Leticia Palazón & Christos Zoumides & Santiago Beguería, 2023. "Optimal Implementation of Climate Change Adaptation Measures to Ensure Long-term Sustainability on Large Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2909-2924, June.
    13. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    14. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghbel, Farzam & Fazel, Forough & Aguilar, Jonathan & Mosaedi, Abolfazl & Lollato, Romulo P., 2024. "Long-term investigation of the irrigation intervals and supplementary irrigation strategies effects on winter wheat in the U.S. Central High Plains based on a combination of crop modeling and field st," Agricultural Water Management, Elsevier, vol. 304(C).
    2. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    3. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    4. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    5. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    6. Wei Li & Rui Song & Muhammad Awais & Leilei Ji & Shuo Li & Mingjiang Liu & Tao Lang & Handong Qi, 2024. "Global Sensitivity Analysis of Crop Parameters Based on AquaCrop Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 2039-2058, April.
    7. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.
    8. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
    9. Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
    10. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    12. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    13. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    14. Qurat-ul-Ain Ahmad & Eddy Moors & Hester Biemans & Nuzba Shaheen & Ilyas Masih & Muhammad Zia Rahman Hashmi, 2023. "Climate-induced shifts in irrigation water demand and supply during sensitive crop growth phases in South Asia," Climatic Change, Springer, vol. 176(11), pages 1-22, November.
    15. Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.
    16. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    17. Shaokang Yang & Zhen Zhao & Shengbin Wang & Shanhu Xiao & Yong Xiao & Jie Wang & Jianhui Wang & Youjin Yuan & Ruishou Ba & Ning Wang & Yuqing Zhang & Liwei Wang & Hongjie Yang, 2024. "Hydrogeochemical Insights into the Sustainable Prospects of Groundwater Resources in an Alpine Irrigation Area on Tibetan Plateau," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    18. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    19. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    20. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.