IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v272y2022ics037837742200381x.html
   My bibliography  Save this article

Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem

Author

Listed:
  • Zhang, Yuanhong
  • Li, Haoyu
  • Sun, Yuanguang
  • Zhang, Qi
  • Liu, Pengzhao
  • Wang, Rui
  • Li, Jun

Abstract

The Loess Plateau is a typical dryland agricultural region where water shortages are the primary limiting factor for crop production. Deep soil moisture plays a crucial role in the regulation of seasonal water shortages, however, the distribution of soil water and its temporal variation in the deep soil profile (i.e., below 2.0 m) are usually unknown in a dryland agricultural field. A field study of three cropping systems (i.e., WWC, continuous winter wheat; SMC, continuous spring-maize; and WMR, a rotation of winter wheat and spring maize) and three tillage practices (i.e., NT, no tillage; ST, subsoiling tillage; and CT, conventional tillage) was carried out in a semi-arid region, and the crop yield, vertical distribution patterns and temporal variability of the soil moisture in a 5.0 m soil profile were studied to evaluate the effect of the various management strategies on the soil water sustainability. The results indicated that the WMR and SMC systems combined with ST practice obtained higher crop yield and water use efficiency, compared to the WWC system. And the time-averaged soil moisture for the three cropping systems differed significantly (P < 0.05). The WWC system can utilize soil water below 2.0 m and caused greater soil water depletion in the 0–5.0 m soil layer. However, no significant differences in the soil water content were found among the different tillage practices. The top soil layer showed a higher index of temporal stability (ITS) value for all cropping systems, but the ITS increased with soil depth in the deep soil profile (below 3.0 m) with the WWC system. Ultimately, the most time-stable depth (MTSD) for estimating the mean soil moisture of the profile was determined to be the 2.0–3.0 soil layer for all three systems based on the ITS values, but the mechanism by which the MTSD was formed differed for the various cropping systems. The soil moisture at the MTSD under WMR and SMC had high temporal stability, and contributed to better soil water sustainability in a dryland agricultural field. These findings may provide helpful base references for evaluating the effect of different management strategies on the soil water and the temporal stability parameters of soil moisture, as well as their impact on the sustainability of the deep soil moisture in a dryland agricultural field.

Suggested Citation

  • Zhang, Yuanhong & Li, Haoyu & Sun, Yuanguang & Zhang, Qi & Liu, Pengzhao & Wang, Rui & Li, Jun, 2022. "Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem," Agricultural Water Management, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s037837742200381x
    DOI: 10.1016/j.agwat.2022.107834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200381X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    2. Yetbarek, Ephrem & Ojha, Richa, 2020. "Spatio-temporal variability of soil moisture in a cropped agricultural plot within the Ganga Basin, India," Agricultural Water Management, Elsevier, vol. 234(C).
    3. Wang, Xiao-Ling & Sun, Guo-Jun & Jia, Yu & Li, Feng-Min & Xu, Jin-Zhang, 2008. "Crop yield and soil water restoration on 9-year-old alfalfa pasture in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 95(3), pages 190-198, March.
    4. Li, Haoyu & Zhang, Yuanhong & Zhang, Qi & Ahmad, Naeem & Liu, Pengzhao & Wang, Rui & Li, Jun & Wang, Xiaoli, 2021. "Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Jia, Yu-Hua & Shao, Ming-An, 2013. "Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 117(C), pages 33-42.
    6. Zhai, Lichao & Wang, Zhanbiao & Song, Shijia & Zhang, Lihua & Zhang, Zhengbin & Jia, Xiuling, 2021. "Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfang Zhao & Dongsheng Liu & Ruixi Huang, 2023. "A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Wang, Wei & Wang, Bao-Zhong & Zhou, Rui & Ullah, Abid & Zhao, Ze-Ying & Wang, Peng-Yang & Su, Yong-Zhong & Xiong, You-Cai, 2022. "Biocrusts as a nature-based strategy (NbS) improve soil carbon and nitrogen stocks and maize productivity in semiarid environment," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    4. Xiangxiang Wang & Zhilong Cheng & Xin Cheng & Quanjiu Wang, 2022. "Effects of Surface Mulching on the Growth and Water Consumption of Maize," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
    5. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Ruiyan Wang & Simon Huston & Yuhuan Li & Huiping Ma & Yang Peng & Lihua Ding, 2018. "Temporal Stability of Groundwater Depth in the Contemporary Yellow River Delta, Eastern China," Sustainability, MDPI, vol. 10(7), pages 1-19, June.
    7. Yin, Jia De & Zhang, Xu Cheng & Ma, Yi Fan & Yu, Xian Feng & Hou, Hui Zhi & Wang, Hong Li & Fang, Yan Jie, 2022. "Vertical rotary sub-soiling under ridge–furrow with plastic mulching system increased crops yield by efficient use of deep soil moisture and rainfall," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Hodges, Blade & Tagert, Mary Love & Paz, Joel O. & Meng, Qingmin, 2023. "Assessing in-field soil moisture variability in the active root zone using granular matrix sensors," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Wang, X.C. & Muhammad, T.N. & Hao, M.D. & Li, J., 2011. "Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 98(8), pages 1262-1270, May.
    10. Zhang, Wenchao & Zhu, Jianqiang & Zhou, Xinguo & Li, Fahu, 2018. "Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield," Agricultural Water Management, Elsevier, vol. 208(C), pages 307-317.
    11. Roberto Mancinelli & Mohamed Allam & Verdiana Petroselli & Mariam Atait & Merima Jasarevic & Alessia Catalani & Sara Marinari & Emanuele Radicetti & Aftab Jamal & Zainul Abideen & Gabriele Chilosi, 2023. "Durum Wheat Production as Affected by Soil Tillage and Fertilization Management in a Mediterranean Environment," Agriculture, MDPI, vol. 13(2), pages 1-15, February.
    12. Hou, Xianqing & Li, Rong & He, Wenshou & Ma, Kun, 2020. "Effects of planting density on potato growth, yield, and water use efficiency during years with variable rainfall on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Yonela Mndela & Naledzani Ndou & Adolph Nyamugama, 2023. "Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    14. Jinxiao Li & Guijun Zhang & Pengtao Zhang & Siyu Jing & Jie Dong, 2023. "Simulation and Zoning Research on the Ecosystem Service in the Beijing–Tianjin–Hebei Region Based on SSP–RCP Scenarios," Land, MDPI, vol. 12(8), pages 1-19, August.
    15. Fang, Chao & Song, Xin & Ye, Jian-Sheng & Yuan, Zi-Qiang & Agathokleous, Evgenios & Feng, Zhaozhong & Li, Feng-Min, 2023. "Enhanced soil water recovery and crop yield following conversion of 9-year-old leguminous pastures into croplands," Agricultural Water Management, Elsevier, vol. 279(C).
    16. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    18. Lishu Wang & Haigang Guo & Lixuan Wang & Dongjuan Cheng, 2022. "Suitable Tillage Depth Promotes Maize Yields by Changing Soil Physical and Chemical Properties in A 3-Year Experiment in the North China Plain," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    19. Yunshan Yang & Guangzhou Liu & Xiaoxia Guo & Wanmao Liu & Jun Xue & Bo Ming & Ruizhi Xie & Keru Wang & Shaokun Li & Peng Hou, 2022. "Effect Mechanism of Solar Radiation on Maize Yield Formation," Agriculture, MDPI, vol. 12(12), pages 1-13, December.
    20. Rui Wang & Lijuan Ma & Wei Lv & Jun Li, 2022. "Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau," Agriculture, MDPI, vol. 12(10), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s037837742200381x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.