IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422002207.html
   My bibliography  Save this article

Comparative analysis of regenerative in situ electrochemical hypochlorination and conventional water disinfection technologies for growing ornamental crops with recirculating hydroponics

Author

Listed:
  • Lévesque, Serge
  • Graham, Thomas
  • Bejan, Dorin
  • Dixon, Mike

Abstract

Capturing and reusing fertigation drainage is a key strategy for maximizing greenhouse production efficiency while minimizing the impact of wastewater discharge on receiving ecosystems. Fertigation drainage, in this regard, refers to irrigation water mixed with fertilizer that has once passed through soilless culture. Although an economically and environmentally prudent practice, recirculating fertigation solutions does pose an increased risk of pathogen proliferation. There are many water disinfection technologies currently available to growers, including ozone (O3(aq)) and Advanced Oxidation Processes (AOP). Beyond currently available treatment options there are emerging technologies that have yet to be optimized for recirculating hydroponics. Electrochemical systems based on Dimensionally Stable Anodes (DSA) offer a novel method for disinfecting fertigation. Using Cyclamen persicum as a representative greenhouse floriculture crop, fertigation solutions were inoculated with Fusarium oxysporum isolated from a diseased C. persicum sample. Following inoculation, solutions were treated with one of either a DSA electrochemical system, a UV/Ozone AOP system, or ozonation. Solutions were then applied to the crop and disease progression was monitored. The positive control group (F. oxysporum added) exhibited pathogenicity following the recirculation of the fertigation solution, while the negative control (F. oxysporum absent) did not show pathogenicity in C. persicum. All water treatment systems achieved a log-4 reduction in F. oxysporum, which prevented pathogenicity in plants. Furthermore, there were no significant differences in plant physiology between the water treatment methods in comparison to the negative control group. However, all treatments performed significantly better than the positive control group which experienced pathogenicity. Solution nutrient analysis indicated stability across all treatments. Energy consumption was also monitored and demonstrated a two-fold reduction in electricity use with the electrochemical flow cell (EFC) compared to the AOP system.

Suggested Citation

  • Lévesque, Serge & Graham, Thomas & Bejan, Dorin & Dixon, Mike, 2022. "Comparative analysis of regenerative in situ electrochemical hypochlorination and conventional water disinfection technologies for growing ornamental crops with recirculating hydroponics," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002207
    DOI: 10.1016/j.agwat.2022.107673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neocleous, Damianos & Nikolaou, Georgios & Ntatsi, Georgia & Savvas, Dimitrios, 2021. "Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Grewal, Harsharn S. & Maheshwari, Basant & Parks, Sophie E., 2011. "Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study," Agricultural Water Management, Elsevier, vol. 98(5), pages 841-846, March.
    3. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    2. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
    4. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    5. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    6. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    7. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    8. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    9. Venot, Jean-Philippe & Reddy, V. Ratna & Umapathy, Deeptha, 2010. "Coping with drought in irrigated South India: Farmers' adjustments in Nagarjuna Sagar," Agricultural Water Management, Elsevier, vol. 97(10), pages 1434-1442, October.
    10. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    11. Salvatore Barbagallo & Simona Consoli & Nello Pappalardo & Salvatore Greco & Santo Zimbone, 2006. "Discovering Reservoir Operating Rules by a Rough Set Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 19-36, February.
    12. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    13. Deng, Xinan & Luo, Yuzhou & Dong, Suocheng & Yang, Xiusheng, 2005. "Impact of resources and technology on farm production in northwestern China," Agricultural Systems, Elsevier, vol. 84(2), pages 155-169, May.
    14. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    16. Sekyi-Annan, Ephraim & Tischbein, Bernhard & Diekkrüger, Bernd & Khamzina, Asia, 2018. "Performance evaluation of reservoir-based irrigation schemes in the Upper East region of Ghana," Agricultural Water Management, Elsevier, vol. 202(C), pages 134-145.
    17. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    18. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Qi Wei & Junzeng Xu & Linxian Liao & Yawei Li & Haiyu Wang & Shah Fahad Rahim, 2018. "Water Salinity Should Be Reduced for Irrigation to Minimize Its Risk of Increased Soil N 2 O Emissions," IJERPH, MDPI, vol. 15(10), pages 1-14, September.
    20. Abdelraouf R. E. & H. G. Ghanem & Najat A. Bukhari & Mohamed El-Zaidy, 2020. "Field and Modeling Study on Manual and Automatic Irrigation Scheduling under Deficit Irrigation of Greenhouse Cucumber," Sustainability, MDPI, vol. 12(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.