IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p9819-d450302.html
   My bibliography  Save this article

Field and Modeling Study on Manual and Automatic Irrigation Scheduling under Deficit Irrigation of Greenhouse Cucumber

Author

Listed:
  • Abdelraouf R. E.

    (Water Relations and Field Irrigation Department, Agricultural and Biological Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza 12622, Egypt)

  • H. G. Ghanem

    (Faculty of Agricultural Engineering, Al-Azhar University, Cairo 11884, Egypt)

  • Najat A. Bukhari

    (Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Mohamed El-Zaidy

    (Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

Abstract

The primary goal of all those working in the field of sustainable water management, particularly in the arid and semi-arid zones, is to increase irrigation efficiency, reduce irrigation water losses, and improve water productivity for all crops. This study assessed the automatic irrigation scheduling and irrigation management on the growth, yield, and water productivity of cucumber under greenhouse conditions. A field experiment was conducted using cucumber grown in aplastic greenhouse during the winter of 2017/18 and 2018/19 at the research farm station of the National Research Centre (NRC), El-Noubaria Region, Behaira Governorate, Egypt. In a split-plot experiment, two different methods to control irrigation scheduling (manual control (MC) and automatic control (AC)) were used in the main plots and three deficit irrigation treatments (100% of full irrigation (FI), 80% of FI, and 60% of FI). Through the obtained results, it was found that the use of the automatic control of the irrigation schedule led to an improvement in the productivity and quality characteristics of the cucumber crop. Automatic irrigation control created healthy conditions for the plant roots located under the least water stress. This led to an increase in nitrogen uptake at the ages of 3, 5, 7, and 9 weeks after planting in addition to improving the total leaf area and the chlorophyll content of leaves, which consequently had a greater effect on increasing yield and water productivity of cucumber. Although the highest values of cucumber productivity were obtained with irrigation at 100% of FI, there were no significant differences between 100% FI and 80% of FI, therefore it is preferable to irrigate at 80% of FI, and this means saving 20% of irrigation water that can be used to irrigate other areas. The SALTMED model simulating all of the following evaluation criteria performed well for soil moisture content and N-uptake as well as the leaves area, the yield, and water productivity of cucumber for all treatments for the two growing seasons 2017/18 and 2018/19, with the overall R 2 of 0.882, 0.903, 0.975, 0.907, and 0.933, respectively.

Suggested Citation

  • Abdelraouf R. E. & H. G. Ghanem & Najat A. Bukhari & Mohamed El-Zaidy, 2020. "Field and Modeling Study on Manual and Automatic Irrigation Scheduling under Deficit Irrigation of Greenhouse Cucumber," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9819-:d:450302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/9819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/9819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jiusheng & Kawano, Hiroshi, 1996. "The areal distribution of soil moisture under sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 29-36, November.
    2. van der Kooij, Saskia & Zwarteveen, Margreet & Boesveld, Harm & Kuper, Marcel, 2013. "The efficiency of drip irrigation unpacked," Agricultural Water Management, Elsevier, vol. 123(C), pages 103-110.
    3. Ertek, Ahmet & Sensoy, Suat & Gedik, Ibrahim & Kucukyumuk, Cenk, 2006. "Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 159-172, March.
    4. Ragab, R. & Malash, N. & Abdel Gawad, G. & Arslan, A. & Ghaibeh, A., 2005. "A holistic generic integrated approach for irrigation, crop and field management: 1. The SALTMED model and its calibration using field data from Egypt and Syria," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 67-88, September.
    5. Luquet, Delphine & Vidal, Alain & Smith, Martin & Dauzat, Jean, 2005. "`More crop per drop': how to make it acceptable for farmers?," Agricultural Water Management, Elsevier, vol. 76(2), pages 108-119, August.
    6. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    7. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    8. Ragab, R. & Malash, N. & Gawad, G. Abdel & Arslan, A. & Ghaibeh, A., 2005. "A holistic generic integrated approach for irrigation, crop and field management: 2. The SALTMED model validation using field data of five growing seasons from Egypt and Syria," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 89-107, September.
    9. Simsek, Mehmet & Tonkaz, Tahsin & Kacira, Murat & Comlekcioglu, Nuray & Dogan, Zeki, 2005. "The effects of different irrigation regimes on cucumber (Cucumbis sativus L.) yield and yield characteristics under open field conditions," Agricultural Water Management, Elsevier, vol. 73(3), pages 173-191, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Shafie, A.F. & Osama, M.A. & Hussein, M.M. & El-Gindy, A.M. & Ragab, R., 2017. "Predicting soil moisture distribution, dry matter, water productivity and potato yield under a modified ‎gated pipe irrigation system: SALTMED model application using field experimental data," Agricultural Water Management, Elsevier, vol. 184(C), pages 221-233.
    2. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Engel, Bernard A. & Ragab, Ragab, 2019. "Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach," Agricultural Water Management, Elsevier, vol. 221(C), pages 449-461.
    3. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    4. Venot, Jean-Philippe, 2016. "A Success of Some Sort: Social Enterprises and Drip Irrigation in the Developing World," World Development, Elsevier, vol. 79(C), pages 69-81.
    5. Ertek, A. & Yilmaz, H., 2014. "The agricultural perspective on water conservation in Turkey," Agricultural Water Management, Elsevier, vol. 143(C), pages 151-158.
    6. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    7. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Ragab, Ragab & Khaliq, Abdul & Engel, Bernard A. & Rizwan, Muhammad & Shahid, Muhammad Adnan & Nawaz, Qamar, 2020. "Modeling corn growth and root zone salinity dynamics to improve irrigation and fertigation management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    9. Ved Parkash & Sukhbir Singh, 2020. "A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    10. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Afzal, M. & Battilani, A. & Solimando, D. & Ragab, R., 2016. "Improving water resources management using different irrigation strategies and water qualities: Field and modelling study," Agricultural Water Management, Elsevier, vol. 176(C), pages 40-54.
    12. Çakir, Recep & Kanburoglu-Çebi, Ulviye & Altintas, Surreya & Ozdemir, Aylin, 2017. "Irrigation scheduling and water use efficiency of cucumber grown as a spring-summer cycle crop in solar greenhouse," Agricultural Water Management, Elsevier, vol. 180(PA), pages 78-87.
    13. Zou, Ping & Yang, Jingsong & Fu, Jianrong & Liu, Guangming & Li, Dongshun, 2010. "Artificial neural network and time series models for predicting soil salt and water content," Agricultural Water Management, Elsevier, vol. 97(12), pages 2009-2019, November.
    14. Barnard, J.H. & Bennie, A.T.P. & van Rensburg, L.D. & Preez, C.C. du, 2015. "SWAMP: A soil layer water supply model for simulating macroscopic crop water uptake under osmotic stress," Agricultural Water Management, Elsevier, vol. 148(C), pages 150-163.
    15. Alonso, A. & Feltz, N. & Gaspart, F. & Sbaa, M. & Vanclooster, M., 2019. "Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco," Agricultural Water Management, Elsevier, vol. 212(C), pages 338-348.
    16. Abd El-Mageed, Taia A. & Semida, Wael M., 2015. "Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.)," Agricultural Water Management, Elsevier, vol. 159(C), pages 1-10.
    17. Abdulaziz G. Alghamdi & Anwar A. Aly & Hesham M. Ibrahim, 2022. "Effect of Climate Change on the Quality of Soil, Groundwater, and Pomegranate Fruit Production in Al-Baha Region, Saudi Arabia: A Modeling Study Using SALTMED," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    18. Siderius, C. & Biemans, H. & Kashaigili, J. & Conway, D., 2022. "Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Hassanli, Mohammad & Ebrahimian, Hamed & Mohammadi, Ehsan & Rahimi, Amirreza & Shokouhi, Amirhossein, 2016. "Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models," Agricultural Water Management, Elsevier, vol. 176(C), pages 91-99.
    20. Ortega-Reig, M. & Sanchis-Ibor, C. & Palau-Salvador, G. & García-Mollá, M. & Avellá-Reus, L., 2017. "Institutional and management implications of drip irrigation introduction in collective irrigation systems in Spain," Agricultural Water Management, Elsevier, vol. 187(C), pages 164-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9819-:d:450302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.