IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v267y2022ics0378377422001573.html
   My bibliography  Save this article

Regional water-saving potential calculation method for paddy rice based on remote sensing

Author

Listed:
  • Wei, Jun
  • Cui, Yuanlai
  • Zhou, Sihang
  • Luo, Yufeng

Abstract

To improve the calculation applicability and operability of regional water-saving potential (RWSP) for paddy rice, a calculation method based on remote sensing (RWSP-RS) was proposed. RWSP-RS consists of three sections: (a) paddy rice mapping by the decision tree algorithm, (b) rice evapotranspiration (ET) inversion under different irrigation modes by the surface energy balance algorithm for land (SEBAL), and (c) WSP based on ET (WSPE) and irrigation (WSPI) calculation by coupling water balance models for paddy fields. The RWSP-RS was applied in the Zhanghe Irrigation District in southern China in 2018 and 2019. The results showed that the three sections of RWSP-RS had high precision: paddy rice mapping errors ranged from 2% to 16%; WSPE of paddy rice errors were 26 mm and 5 mm for 2018 and 2019, respectively; and WSPI errors were 5 mm and 23 mm for 2018 and 2019, respectively. The WSPI of paddy rice in the whole region was 44.52 million m3 and 99.12 million m3 for 2018 and 2019, respectively. RWSP-RS has the characteristics of solid operability, good regional applicability, and time and labor savings, making it a recommended method for calculating the RWSP of paddy rice and contributing to regional water resource management.

Suggested Citation

  • Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:agiwat:v:267:y:2022:i:c:s0378377422001573
    DOI: 10.1016/j.agwat.2022.107610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horst, M.G. & Shamutalov, S.S. & Pereira, L.S. & Goncalves, J.M., 2005. "Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 210-231, August.
    2. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    3. Wu, Di & Cui, Yuanlai & Li, Dacheng & Chen, Manyu & Ye, Xugang & Fan, Guofu & Gong, Lanqiang, 2021. "Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems," Agricultural Water Management, Elsevier, vol. 244(C).
    4. Kibria, Saad & Masia, Sara & Sušnik, Janez & Hessels, Tim Martijn, 2021. "Critical comparison of actual evapotranspiration estimates using ground based, remotely sensed, and simulated data in the USA," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Mhawej, Mario & Elias, Georgie & Nasrallah, Ali & Faour, Ghaleb, 2020. "Dynamic calibration for better SEBALI ET estimations: Validations and recommendations," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Wu, Di & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation efficiency and water-saving potential considering reuse of return flow," Agricultural Water Management, Elsevier, vol. 221(C), pages 519-527.
    7. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    8. Zhuang, Yanhua & Zhang, Liang & Li, Sisi & Liu, Hongbin & Zhai, Limei & Zhou, Feng & Ye, Yushi & Ruan, Shuhe & Wen, Weijia, 2019. "Effects and potential of water-saving irrigation for rice production in China," Agricultural Water Management, Elsevier, vol. 217(C), pages 374-382.
    9. Mhawej, Mario & Caiserman, Arnaud & Nasrallah, Ali & Dawi, Ali & Bachour, Roula & Faour, Ghaleb, 2020. "Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI," Agricultural Water Management, Elsevier, vol. 229(C).
    10. Pan, Junfeng & Liu, Yanzhuo & Zhong, Xuhua & Lampayan, Rubenito M. & Singleton, Grant R. & Huang, Nongrong & Liang, Kaiming & Peng, Bilin & Tian, Ka, 2017. "Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China," Agricultural Water Management, Elsevier, vol. 184(C), pages 191-200.
    11. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Wang, Hong & Zhang, Yan & Zhang, Yaojun & McDaniel, Marshall D. & Sun, Lan & Su, Wei & Fan, Xiaorong & Liu, Shuhua & Xiao, Xin, 2020. "Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – With both reduced greenhouse gas emissions and enhanced water use efficiency," Agricultural Water Management, Elsevier, vol. 228(C).
    13. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    14. Siyal, A.A. & Mashori, A.S. & Bristow, K.L. & van Genuchten, M.Th., 2016. "Alternate furrow irrigation can radically improve water productivity of okra," Agricultural Water Management, Elsevier, vol. 173(C), pages 55-60.
    15. Borin, José Bernardo Moraes & Carmona, Felipe de Campos & Anghinoni, Ibanor & Martins, Amanda Posselt & Jaeger, Isadora Rodrigues & Marcolin, Elio & Hernandes, Gustavo Cantori & Camargo, Estefânia Sil, 2016. "Soil solution chemical attributes, rice response and water use efficiency under different flood irrigation management methods," Agricultural Water Management, Elsevier, vol. 176(C), pages 9-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jie & Zhuo, La & Duan, Ximing & Wu, Pute, 2023. "Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Liang, Kaiming & Zhong, Xuhua & Fu, Youqiang & Hu, Xiangyu & Li, Meijuan & Pan, Junfeng & Liu, Yanzhuo & Hu, Rui & Ye, Qunhuan, 2023. "Mitigation of environmental N pollution and greenhouse gas emission from double rice cropping system with a new alternate wetting and drying irrigation regime coupled with optimized N fertilization in," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Sabzchi-Dehkharghani, Hamed & Nazemi, Amir Hossein & Sadraddini, Ali Ashraf & Majnooni-Heris, Abolfazl & Biswas, Asim, 2021. "Recognition of different yield potentials among rain-fed wheat fields before harvest using remote sensing," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Lima, Carlos Eduardo Santos de & Costa, Valéria Sandra de Oliveira & Galvíncio, Josiclêda Domiciano & Silva, Richarde Marques da & Santos, Celso Augusto Guimarães, 2021. "Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    7. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Gao, Jie & Zhuo, La & Duan, Ximing & Wu, Pute, 2023. "Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district," Agricultural Water Management, Elsevier, vol. 282(C).
    11. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    12. Wei Qu & Yanmei Tan & Zhentao Li & Eefje Aarnoudse & Qin Tu, 2020. "Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    13. Qi, Suting & Yang, Shihong & Lin, Xiuyan & Hu, Jiazhen & Jiang, Zewei & Xu, Yi, 2023. "The long-term effectiveness of biochar in increasing phosphorus availability and reducing its release risk to the environment in water-saving irrigated paddy fields," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Allam, Mona & Mhawej, Mario & Meng, Qingyan & Faour, Ghaleb & Abunnasr, Yaser & Fadel, Ali & Xinli, Hu, 2021. "Monthly 10-m evapotranspiration rates retrieved by SEBALI with Sentinel-2 and MODIS LST data," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Liang Xiao & Libin Bao & Lantian Ren & Yiqin Xie & Hong Wang & Xiang Wang & Jianfei Wang & Cece Qiao & Xin Xiao, 2022. "Appropriate Irrigation and Fertilization Regime Restrain Indigenous Soil Key Ammonia-Oxidizing Archaeal and Bacterial Consortia to Mitigate Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    17. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    19. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    20. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:267:y:2022:i:c:s0378377422001573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.