IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377421007149.html
   My bibliography  Save this article

Assessing the costs of Managed Aquifer Recharge options to support agricultural development

Author

Listed:
  • Vanderzalm, Joanne
  • Page, Declan
  • Dillon, Peter
  • Gonzalez, Dennis
  • Petheram, Cuan

Abstract

Managed aquifer recharge (MAR) can play an important role in agricultural water management and productivity where suitable aquifers exist. Yet while the benefits and costs of surface water storage have been extensively reported, the benefits and costs of MAR have been under reported and poorly conceptualised to date. In this study of ten potential MAR schemes in wet-dry tropical climates of northern Australia the estimated levelized costs ranged from US$0.04 to $0.36/m3 for MAR schemes of 0.6–5 Mm3/y capacity. The type of MAR scheme had the largest influence on cost, resulting in the following order of increasing cost for 1 Mm3/y schemes: recharge release, infiltration basin, recharge weir, aquifer storage transfer and recovery (ASTR), aquifer storage and recovery (ASR), seawater intrusion barrier. Infiltration type schemes were typically lower cost than well-injection. Scheme scale, end use and experience with similar schemes were also key influences on cost. A five-fold increase in scale reduced the levelized cost of ASR by 60%. Conceptualisation allows comparison across dissimilar schemes and revealed significant costs (20–100% of operating) associated with approvals and monitoring required for risk-based scheme development and operation. MAR can facilitate conjunctive use of surface and groundwater for improved agricultural water management. Dams typically provide considerably larger storages which results in lower levelized costs, with estimates of $0.03 to $0.18/m3 for options (annual yield 55–1248 Mm3) in the same study area. MAR is more favoured in areas of low relief, offers the benefit of reducing evaporative losses and is well suited to mosaic irrigation with incremental development and relatively low capital expenditure which may be attractive for agricultural irrigation.

Suggested Citation

  • Vanderzalm, Joanne & Page, Declan & Dillon, Peter & Gonzalez, Dennis & Petheram, Cuan, 2022. "Assessing the costs of Managed Aquifer Recharge options to support agricultural development," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377421007149
    DOI: 10.1016/j.agwat.2021.107437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421007149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    2. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    3. Khan, Shahbaz & Mushtaq, Shahbaz & Hanjra, Munir A. & Schaeffer, Jürgen, 2008. "Estimating potential costs and gains from an aquifer storage and recovery program in Australia," Agricultural Water Management, Elsevier, vol. 95(4), pages 477-488, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olha Halytsia & Maria Vrachioli & Krzysztof Janik & Sławomir Sitek & Grzegorz Wojtal & Anne Imig & Arno Rein & Johannes Sauer, 2022. "Assessing Economic Feasibility of Managed Aquifer Recharge Schemes: Evidence from Cost-benefit Analysis in Poland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5241-5258, October.
    2. Page, Declan & Vanderzalm, Joanne & Gonzalez, Dennis & Bennett, James & Castellazzi, Pascal, 2023. "Managed aquifer recharge for agriculture in Australia – History, success factors and future implementation," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    4. Kaur, Rajbir & Arora, VK, 2019. "Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India," Agricultural Water Management, Elsevier, vol. 213(C), pages 724-731.
    5. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    6. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    8. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    9. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    10. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    11. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    12. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    13. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    14. Mounir Amdaoud, 2019. "Ressources naturelles, innovation et développement économique : vers une nouvelle approche," CEPN Working Papers 2019-06, Centre d'Economie de l'Université de Paris Nord.
    15. Lan Mu & Chunxia Luo & Zongjia Tan & Binglin Zhang & Xiaojuan Qu, 2023. "Assessing the Impact of Different Agricultural Irrigation Charging Methods on Sustainable Agricultural Production," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    16. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Tendai Polite Chibarabada & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2017. "Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment," IJERPH, MDPI, vol. 14(11), pages 1-17, October.
    18. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    19. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    20. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377421007149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.