IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006752.html
   My bibliography  Save this article

Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas

Author

Listed:
  • Mao, Wei
  • Zhu, Yan
  • Wu, Jingwei
  • Ye, Ming
  • Yang, Jinzhong

Abstract

Irrigation plays an important role in agricultural production, especially in arid and semi-arid regions. However, the conflict between water supply and demand will become more serious with increasing population. This study was to evaluate the effects of limited irrigation on regional-scale water movement and salt accumulation processes in agricultural areas. Due to frequent vertical interactions between the saturated groundwater zone and the unsaturated soil water zone and significant lateral groundwater movement between different horizontal areas in arid and semi-arid agricultural areas with shallow groundwater level, a quasi-three-dimensional (quasi-3D) model was adopted, which coupled one-dimensional (1D) soil water and salt movement and 3D groundwater and salt movement. The Yonglian irrigation area was used as the typical study site. Nine limited irrigation scenarios based on different allocations of irrigation water and hydrological years were set and analyzed. The main results were as follows: (1) The net groundwater recharge is negative under most of limited irrigation conditions, causing the decline of groundwater level ranging from 0.028 m to 0.199 m within one year. (2) With the decrease of irrigation and precipitation in farmland during the crop growth period, the groundwater recharge, groundwater recharge concentration, leaching efficiency coefficient will decrease linearly, while soil salt storage index will increase linearly. (3) Salts may accumulate in the root zone for dry years or normal years with autumn irrigation water less than 100 mm per unit area. (4) Lateral groundwater fluxes and salts contained in lateral groundwater fluxes will reduce approximately 30% and 40% under limited irrigation conditions. (5) The root zone will suffer from a very severe threat of soil salinization in farmlands in the future when considering the average annual increase rate of soil salt in the root zone is 3.6% under limited irrigation conditions, and necessarily intervenes are needed. The results could support decision-making for water-saving and soil salinity prevention in arid agricultural districts.

Suggested Citation

  • Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006752
    DOI: 10.1016/j.agwat.2021.107398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kisekka, I. & Schlegel, A. & Ma, L. & Gowda, P.H. & Prasad, P.V.V., 2017. "Optimizing preplant irrigation for maize under limited water in the High Plains," Agricultural Water Management, Elsevier, vol. 187(C), pages 154-163.
    2. Xiao, Xue & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Huang, Guanhua, 2021. "Modeling the behavior of shallow groundwater system in sustaining arid agroecosystems with fragmented land use," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Schmitter, Petra & Zwart, Sander J. & Danvi, Alexandre & Gbaguidi, Félix, 2015. "Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley," Agricultural Water Management, Elsevier, vol. 152(C), pages 286-298.
    4. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    5. Yu, Ruihong & Liu, Tingxi & Xu, Youpeng & Zhu, Chao & Zhang, Qing & Qu, Zhongyi & Liu, Xiaomin & Li, Changyou, 2010. "Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China," Agricultural Water Management, Elsevier, vol. 97(12), pages 1952-1960, November.
    6. Qingfeng Miao & José M. Gonçalves & Ruiping Li & Diana Gonçalves & Tiago Levita & Haibin Shi, 2021. "Assessment of Precise Land Levelling on Surface Irrigation Development. Impacts on Maize Water Productivity and Economics," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    7. Xiang, Zaichen & Bailey, Ryan T. & Nozari, Soheil & Husain, Zainab & Kisekka, Isaya & Sharda, Vaishali & Gowda, Prasanna, 2020. "DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    9. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    10. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    11. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    12. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    13. Mao, Wei & Yang, Jinzhong & Zhu, Yan & Ye, Ming & Wu, Jingwei, 2017. "Loosely coupled SaltMod for simulating groundwater and salt dynamics under well-canal conjunctive irrigation in semi-arid areas," Agricultural Water Management, Elsevier, vol. 192(C), pages 209-220.
    14. Jahanzad, E. & Jorat, M. & Moghadam, H. & Sadeghpour, A. & Chaichi, M.-R. & Dashtaki, M., 2013. "Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density," Agricultural Water Management, Elsevier, vol. 117(C), pages 62-69.
    15. Konukcu, F. & Gowing, J.W. & Rose, D.A., 2006. "Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas?," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    3. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    5. Xiao, Xue & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Huang, Guanhua, 2021. "Modeling the behavior of shallow groundwater system in sustaining arid agroecosystems with fragmented land use," Agricultural Water Management, Elsevier, vol. 249(C).
    6. Yannan Liu & Yan Zhu & Wei Mao & Guanfang Sun & Xudong Han & Jingwei Wu & Jinzhong Yang, 2022. "Development and Application of a Water and Salt Balance Model for Well-Canal Conjunctive Irrigation in Semiarid Areas with Shallow Water Tables," Agriculture, MDPI, vol. 12(3), pages 1-25, March.
    7. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    8. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    10. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    11. Zhang, Xiaoxing & Guo, Ping & Guo, Wenxian & Gong, Juan & Luo, Biao, 2021. "Optimization towards sustainable development in shallow groundwater area and risk analysis," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    14. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    15. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    17. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    18. Xiong, Lvyang & Jiang, Yao & Li, Xinyi & Ren, Dongyang & Huang, Guanhua, 2023. "Long-term regional groundwater responses and their ecological impacts under agricultural water saving in an arid irrigation district, upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    20. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.