IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v311y2025ics0378377425000915.html
   My bibliography  Save this article

Evaluating the influence of different straw mulch-autumn irrigation patterns on soil water, heat, and salt in seasonally frozen regions with distributed SHAW model

Author

Listed:
  • Xue, Jing
  • Fu, Chong
  • Chen, Junfeng
  • Cui, Lihong

Abstract

Water scarcity and soil salinization are significant challenges to agricultural production in the Hetao Irrigation District (HID). Autumn irrigation is a crucial strategy for water conservation and salt leaching, and straw mulch is an effective method for alleviating soil salinization. This study used the distributed SHAW model to analyze the spatiotemporal distribution of soil water-heat-salt during the freeze-thaw period (FTP) and spring sowing period (SSP) under various straw mulch-autumn irrigation (SMAI) patterns in the HID from 2000 to 2017. Suitable SMAI modes were recommended and quantitatively evaluated. Results showed that straw mulch thickness influenced soil water, heat, and salt dynamics and the effect of autumn watering was not obvious. Compared with no mulch, under different straw mulch patterns, the 0–40 cm soil water content (SWC) increased by 12.9∼13.1 % on average, the soil temperature (ST) rose by 31.6∼33.6 %, and the soil salt content (SSC) decreased by 38∼49.5 %. Aiming at "low soil salt", "suitable soil moisture and temperature", "water saving", and "straw mulch cost saving", an autumn irrigation quota of 90 mm and straw mulch of 0.9 kg/m2 were recommended for Dengkou County (DK) and Hangqinhouqi (HH); Linhe District (LH) and Wuyuan County (WY) were advised to adopt an autumn irrigation quota of 90 mm and straw mulch of 0.6 kg/m2; Wulateqianqi (WQQ) was recommended to adopt an autumn irrigation quota of 90 mm with no mulch. Compared with traditional autumn irrigation, under the recommended SMAI mode, the average annual increase in SWC was 0.1∼6.6 %, ST varied from −6.6–6.2 %, and SSC changed from −34.6–20.8 %. Implementing the recommended mode could save approximately 494 million m³ of Yellow River water annually, despite an average annual cost of about 13.77 million RMB (1.97 million US $) for straw mulch. The results offer useful references for optimizing SMAI modes and conserving water resources in the HID.

Suggested Citation

  • Xue, Jing & Fu, Chong & Chen, Junfeng & Cui, Lihong, 2025. "Evaluating the influence of different straw mulch-autumn irrigation patterns on soil water, heat, and salt in seasonally frozen regions with distributed SHAW model," Agricultural Water Management, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000915
    DOI: 10.1016/j.agwat.2025.109377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Yu, Bing & Shang, Songhao, 2024. "Integrated assessment of crop planting suitability: A case study in the Hetao Irrigation District of China using HJ-1A/1B satellite data," Agricultural Water Management, Elsevier, vol. 301(C).
    3. Xu, Xu & Jiang, Yao & Liu, Minghuan & Huang, Quanzhong & Huang, Guanhua, 2019. "Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin," Agricultural Water Management, Elsevier, vol. 211(C), pages 152-164.
    4. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Wang, Wanning & Wang, Weishu & Wang, Pu & Wang, Xianghao & Wang, Liwen & Wang, Chaozi & Zhang, Chenglong & Huo, Zailin, 2023. "Impact of straw return on soil temperature and water during the freeze-thaw period," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    7. Salman Alfarisi & Yuya Mitake & Yusuke Tsutsui & Hanfei Wang & Yoshiki Shimomura, 2023. "Nurture: A Novel Approach to PSS-Rebound Effect Identification," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    8. Fu, Chong & Xue, Jing & Chen, Junfeng & Cui, Lihong & Wang, Hui, 2024. "Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model," Agricultural Water Management, Elsevier, vol. 293(C).
    9. Liu, Xiuxia & Ma, Shimeng & Fang, Yu & Wang, Sufen & Guo, Ping, 2023. "A novel approach to identify crop irrigation priority," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
    11. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    12. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    13. Ao, Chang & Zeng, Wenzhi & Wu, Lifeng & Qian, Long & Srivastava, Amit Kumar & Gaiser, Thomas, 2021. "Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chong & Xue, Jing & Chen, Junfeng & Cui, Lihong & Wang, Hui, 2024. "Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model," Agricultural Water Management, Elsevier, vol. 293(C).
    2. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    3. Li, Jiang & Shang, Songhao & Jiang, Hongzhe & Song, Jian & Rahman, Khalil Ur & Adeloye, Adebayo J., 2021. "Simulation-based optimization for spatiotemporal allocation of irrigation water in arid region," Agricultural Water Management, Elsevier, vol. 254(C).
    4. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Liu Liu & Zezhong Guo & Guanhua Huang & Ruotong Wang, 2019. "Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    6. Yin Zhang & Qingfeng Miao & Ruiping Li & Minghai Sun & Xinmin Yang & Wei Wang & Yongping Huang & Weiying Feng, 2024. "Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation," Land, MDPI, vol. 13(6), pages 1-18, May.
    7. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    10. Li, He & Miao, Qingfeng & Shi, Haibin & Li, Xianyue & Zhang, Shengwei & Zhang, Fengxia & Bu, Huailiang & Wang, Pei & Yang, Lin & Wang, Yali & Du, Heng & Wang, Tong & Feng, Weiying, 2024. "Remote sensing monitoring of irrigated area in the non-growth season and of water consumption analysis in a large-scale irrigation district," Agricultural Water Management, Elsevier, vol. 303(C).
    11. Guo, Shuhao & Li, Xianyue & Šimůnek, Jirí & Wang, Jun & Zhang, Yuehong & Wang, Ya'nan & Zhen, Zhixin & He, Rui, 2024. "Experimental and numerical evaluation of soil water and salt dynamics in a corn field with shallow saline groundwater and crop-season drip and autumn post-harvest irrigations," Agricultural Water Management, Elsevier, vol. 305(C).
    12. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Chi, Daocai & Huang, Guanhua, 2023. "Modeling maize water consumption and growth under plastic film mulch using an agro–hydrological model: Searching for the optimal plant density in different hydrological years," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Zheng Lu & Yuan He & Shuyan Peng, 2023. "Assessing Integrated Hydrologic Model: From Benchmarking to Case Study in a Typical Arid and Semi-Arid Basin," Land, MDPI, vol. 12(3), pages 1-23, March.
    14. Liu, Minghuan & Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2018. "Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 37-52.
    15. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    17. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    18. Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
    19. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:311:y:2025:i:c:s0378377425000915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.