IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v218y2019icp82-93.html
   My bibliography  Save this article

Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions

Author

Listed:
  • Vema, Vamsikrishna
  • Sudheer, K.P.
  • Chaubey, I.

Abstract

Watershed management (WM) aims at enhancing the water availability in rainfed areas through water conservation structures, which facilitate storage of water and recharge to ground water. Identification of suitable locations for placing these structures play a major role in the effectiveness of the water conservation. Site suitability evaluation of water conservation structures is performed through an assessment of various biophysical and socio-economic factors. Many of these factors are expressed in linguistic terms rather than precise numeric values, and therefore the output of the evaluation gets subjective. In this study, a fuzzy inference system (FIS) is developed for site selection of water harvesting structures (check dams, farm ponds, and percolation tanks), owing to its capability to handle linguistic data effectively. The suitability zones were identified using the slope, soil permeability and runoff potential as input variables to the FIS. Trapezoidal membership function (MF) was considered for the input and output variables for the fuzzy model and MF parameters were obtained from literature and expert knowledge. The developed FIS is illustrated through an application to Kondepi watershed, Andhra Pradesh, India. The FIS categorized the majority of the watershed area into high suitability class for both farm ponds and check dams. However, the watershed characteristics were not conducive for percolation tanks according to the FIS. A sensitivity analysis of the FIS parameters suggested that the check dam suitability was sensitive to the soil permeability classes. The suitability maps from the FIS were in good agreement with the location of the existing structures in the watershed, suggesting potential use of the developed FIS in WM decisions.

Suggested Citation

  • Vema, Vamsikrishna & Sudheer, K.P. & Chaubey, I., 2019. "Fuzzy inference system for site suitability evaluation of water harvesting structures in rainfed regions," Agricultural Water Management, Elsevier, vol. 218(C), pages 82-93.
  • Handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:82-93
    DOI: 10.1016/j.agwat.2019.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419305505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rida Al-Adamat, 2008. "Gis As A Decision Support System For Siting Water Harvesting Ponds In The Basalt Aquifer/Ne Jordan," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 189-206.
    2. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    3. Napoli, Marco & Cecchi, Stefano & Orlandini, Simone & Zanchi, Camillo A., 2014. "Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy," Agricultural Water Management, Elsevier, vol. 141(C), pages 55-65.
    4. Ajaykumar Kadam & Sanjay Kale & Nagesh Pande & N. Pawar & R. Sankhua, 2012. "Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2537-2554, July.
    5. Sicat, Rodrigo S. & Carranza, Emmanuel John M. & Nidumolu, Uday Bhaskar, 2005. "Fuzzy modeling of farmers' knowledge for land suitability classification," Agricultural Systems, Elsevier, vol. 83(1), pages 49-75, January.
    6. Reshmidevi, T.V. & Eldho, T.I. & Jana, R., 2009. "A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds," Agricultural Systems, Elsevier, vol. 101(1-2), pages 101-109, June.
    7. Dai, C. & Cai, Y.P. & Ren, W. & Xie, Y.F. & Guo, H.C., 2016. "Identification of optimal placements of best management practices through an interval-fuzzy possibilistic programming model," Agricultural Water Management, Elsevier, vol. 165(C), pages 108-121.
    8. Adham, Ammar & Wesseling, Jan G. & Riksen, Michel & Ouessar, Mohamed & Ritsema, Coen J., 2016. "A water harvesting model for optimizing rainwater harvesting in the wadi Oum Zessar watershed, Tunisia," Agricultural Water Management, Elsevier, vol. 176(C), pages 191-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luigi Pari & Luca Cozzolino & Simone Bergonzoli, 2023. "Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience," Agriculture, MDPI, vol. 13(12), pages 1-9, December.
    2. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).
    3. Delaney, R.G. & Blackburn, G.A. & Whyatt, J.D. & Folkard, A.M., 2022. "SiteFinder: A geospatial scoping tool to assist the siting of external water harvesting structures," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Yuan Chen & Zhijie Zhou & Lihao Yang & Guanyu Hu & Xiaoxia Han & Shuaiwen Tang, 2022. "A novel structural safety assessment method of large liquid tank based on the belief rule base and finite element method," Journal of Risk and Reliability, , vol. 236(3), pages 458-476, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Akbar Jamali & Reza Ghorbani Kalkhajeh, 2020. "Spatial Modeling Considering valley’s Shape and Rural Satisfaction in Check Dams Site Selection and Water Harvesting in the Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3331-3344, August.
    2. Ray-Shyan Wu & Gabriela Lucia Letona Molina & Fiaz Hussain, 2018. "Optimal Sites Identification for Rainwater Harvesting in Northeastern Guatemala by Analytical Hierarchy Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 4139-4153, September.
    3. Akpoti, Komlavi & Kabo-bah, Amos T. & Zwart, Sander J., 2019. "Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 172-208.
    4. Delaney, R.G. & Blackburn, G.A. & Whyatt, J.D. & Folkard, A.M., 2022. "SiteFinder: A geospatial scoping tool to assist the siting of external water harvesting structures," Agricultural Water Management, Elsevier, vol. 272(C).
    5. Salvacion Arnold R., 2017. "Mapping Spatio-Temporal Changes in Climatic Suitability of Corn in the Philippines under Future Climate Condition," Quaestiones Geographicae, Sciendo, vol. 36(1), pages 105-120, March.
    6. Pilehforooshha, Parastoo & Karimi, Mohammad & Taleai, Mohammad, 2014. "A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand," Agricultural Systems, Elsevier, vol. 130(C), pages 116-125.
    7. Akinchan Singhai & Sandipan Das & Ajaykumar K. Kadam & J. P. Shukla & D. S. Bundela & Mahesh Kalashetty, 2019. "GIS-based multi-criteria approach for identification of rainwater harvesting zones in upper Betwa sub-basin of Madhya Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 777-797, April.
    8. Alvaro Alberto López-Lambraño & Luisa Martínez-Acosta & Ena Gámez-Balmaceda & Juan Pablo Medrano-Barboza & John Freddy Remolina López & Alvaro López-Ramos, 2020. "Supply and Demand Analysis of Water Resources. Case Study: Irrigation Water Demand in a Semi-Arid Zone in Mexico," Agriculture, MDPI, vol. 10(8), pages 1-20, August.
    9. Kuldeep Tiwari & Rohit Goyal & Archana Sarkar, 2018. "GIS-based Methodology for Identification of Suitable Locations for Rainwater Harvesting Structures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1811-1825, March.
    10. Tu, Anguo & Xie, Songhua & Mo, Minghao & Song, Yuejun & Li, Ying, 2021. "Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    12. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    13. Azadi, H. & Shahvali, M. & van den Berg, J.H. & Faghih, N., 2005. "Sustainable Rangeland Management Using A Multi-Fuzzy Model: How To Deal With Heterogeneous Experts’ Knowledge," ERIM Report Series Research in Management ERS-2005-016-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    15. An Thinh Nguyen & Van Hanh Ta & Van Hong Nguyen & Anh Tuan Pham & Mélie Monnerat & Luc Hens, 2022. "Shifting challenges for Cinnamomum cassia production in the mountains of Northern Vietnam: spatial analysis combined with semi-structured interviews," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7213-7235, May.
    16. Lokesh Jain & Harish Kumar & R. K. Singla, 2015. "Assessing Mobile Technology Usage for Knowledge Dissemination among Farmers in Punjab," Information Technology for Development, Taylor & Francis Journals, vol. 21(4), pages 668-676, October.
    17. Wang, Qi & Zhang, Dengkui & Zhou, Xujiao & Mak-Mensah, Erastus & Zhao, Xiaole & Zhao, Wucheng & Wang, Xiaoyun & Stellmach, Dan & Liu, Qinglin & Li, Xiaoling & Li, Guang & Wang, Heling & Zhang, Kai, 2022. "Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Suddhasil Bose & Subhra Halder, 2023. "Identification of crop suitable land using geospatial techniques and assessment with socio-economic factors—case study from India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 229-253, March.
    19. Zongzhi Wang & Ailing Ye & Kelin Liu & Liting Tan, 2021. "Optimal Model of Desalination Planning Under Uncertainties in a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3277-3295, August.
    20. Rejani Raghavan & Kondru Venkateswara Rao & Maheshwar Shivashankar Shirahatti & Duvvala Kalyana Srinivas & Kotha Sammi Reddy & Gajjala Ravindra Chary & Kodigal A. Gopinath & Mohammed Osman & Mathyam P, 2022. "Assessment of Spatial and Temporal Variations in Runoff Potential under Changing Climatic Scenarios in Northern Part of Karnataka in India Using Geospatial Techniques," Sustainability, MDPI, vol. 14(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:82-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.