IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v192y2017icp115-125.html
   My bibliography  Save this article

Field soil and ditch sediment phosphorus dynamics from two artificially drained fields on poorly drained soils

Author

Listed:
  • Daly, K.
  • Tuohy, P.
  • Peyton, D.
  • Wall, D.P.
  • Fenton, O.

Abstract

The installation of artificial drains alters soil permeability such that migrating water interacts with soil and sediment biogeochemistry to mobilise or attenuate phosphorus (P). Soil and ditch sediment P chemistry was explored at two artificially drained sites with similar land use, management and drainage class. Site A was characterised by high total P content (282–1437mgkg−1) and elevated water soluble P (WSP) (10.11mgkg−1) in a Humic topsoil. Subsurface horizons contained high amounts of leached aluminium (Al) and iron (Fe) and P sorption capacities expressed by the Freundlich K term increased with depth from 338 to 942mgkg−1. Site B was characterised by low TP (58–476mgkg−1) and low P sorption capacities (40–173mgkg−1) that decreased with depth, owing to a high% sand and low Al. Bankside and sediment in the ditch were mostly higher or comparable to P sorption properties measured in subsurface soil horizons from adjacent fields. Dissolved reactive P (DRP) concentrations were monitored in the open ditch, end-of-pipe and in-field piezometers and highest values were recorded in the open ditch (0.03–0.183mgl−1) at Site A, potentially due to diffuse and point sources on the farm. Higher P concentrations were recorded at end-of-pipe locations compared to piezometers at similar depth, and attributed to a larger contributing area reaching the pipe from the surface and surrounding subsurface layers. Attenuation of WSP by subsoil at Site A was evidenced by low piezometer values (0–0.003mgl−1). Low P sorption in the ditch at Site B suggests that dredging could expose low P sorbing layers, but adding topsoil could enhance P sorption. Drainage design, maintenance, and measures for P mitigation require an assessment of surface and subsurface P dynamics to ensure a ‘right measure right place’ approach.

Suggested Citation

  • Daly, K. & Tuohy, P. & Peyton, D. & Wall, D.P. & Fenton, O., 2017. "Field soil and ditch sediment phosphorus dynamics from two artificially drained fields on poorly drained soils," Agricultural Water Management, Elsevier, vol. 192(C), pages 115-125.
  • Handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:115-125
    DOI: 10.1016/j.agwat.2017.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417302287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christianson, L.E. & Harmel, R.D., 2015. "The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies," Agricultural Water Management, Elsevier, vol. 159(C), pages 277-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Micha, Evgenia & Roberts, William & O’ Sullivan, Lilian & O’ Connell, Kay & Daly, Karen, 2020. "Examining the policy-practice gap: The divergence between regulation and reality in organic fertiliser allocation in pasture based systems," Agricultural Systems, Elsevier, vol. 179(C).
    2. Li, Xiaona & Zhang, Weiwei & Zhao, Chunqiao & Li, Hongjie & Shi, Ruishuang, 2020. "Nitrogen interception and fate in vegetated ditches using the isotope tracer method: A simulation study in northern China," Agricultural Water Management, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovani Preza-Fontes & Junming Wang & Muhammad Umar & Meilan Qi & Kamaljit Banger & Cameron Pittelkow & Emerson Nafziger, 2021. "Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    2. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Liu, Wenlong & Youssef, Mohamed A. & Birgand, François P. & Chescheir, George M. & Tian, Shiying & Maxwell, Bryan M., 2020. "Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Ojeda, Jonathan J. & Volenec, Jeffrey J. & Brouder, Sylvie M. & Caviglia, Octavio P. & Agnusdei, Mónica G., 2018. "Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM," Agricultural Water Management, Elsevier, vol. 195(C), pages 154-171.
    5. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    6. Hertzberger, A. & Pittelkow, C.M. & Harmel, R.D. & Christianson, L.E., 2019. "The MANAGE Drain Concentration database: A new tool compiling North American drainage nutrient concentrations," Agricultural Water Management, Elsevier, vol. 216(C), pages 113-117.
    7. Sunohara, Mark D. & Gottschall, Natalie & Craiovan, Emilia & Wilkes, Graham & Topp, Edward & Frey, Steven K. & Lapen, David R., 2016. "Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water," Agricultural Water Management, Elsevier, vol. 178(C), pages 159-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:115-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.