IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v141y2014icp47-54.html
   My bibliography  Save this article

Crop evapotranspiration, arable cropping systems and water sustainability in southern Hebei, P.R. China

Author

Listed:
  • Holst, Jirko
  • Liu, Wenping
  • Zhang, Qian
  • Doluschitz, Reiner

Abstract

The effects of different crops and cropping systems on agricultural water use were explored for the region of Handan, Hebei province, P.R. China, with the goal of achieving more water-sustainable crop production and to ensure regional food security. The evapotranspiration of different crops and cropping systems was estimated using the FAO Penman–Monteith approach from 2000 to 2010 and compared with the natural precipitation amounts. Sown areas of individual crops were used to calculate regional water estimates and to identify crops with the highest need for irrigation water in Handan. Additionally, the number of people who were being sustained from the current and water-sustainable crop production was calculated by comparing the total crop energy produced in Handan with the energy intake of its population. Regional water-sustainability was achieved during simulation by balancing excessive evapotranspiration of croplands with the water-retention from year-round fallowed land. Several options that would lower agricultural water consumption while maintaining the current output of food energy were assessed based on the demands of individual crops for irrigation water. The present investigation determined that none of the tested single- or double-cropping systems were water-sustainable on a hectare scale, as evapotranspiration always exceeded the amount of natural precipitation. Nearly 30% of all evapotranspired water was irrigation water, which was mainly consumed by winter wheat, cotton and vegetables. The average crop production in Handan sustained 15 million people. Conversely, water-sustainable agriculture supplied food for only 5 million people from the available arable land, as approximately 60% of the arable land was a necessary compensation area designed to offset excessive crop evapotranspiration from the remaining croplands. The most effective ways to reduce agricultural water consumption were to allocate cotton areas to summer-grain crop production and to limit grain-based meat production.

Suggested Citation

  • Holst, Jirko & Liu, Wenping & Zhang, Qian & Doluschitz, Reiner, 2014. "Crop evapotranspiration, arable cropping systems and water sustainability in southern Hebei, P.R. China," Agricultural Water Management, Elsevier, vol. 141(C), pages 47-54.
  • Handle: RePEc:eee:agiwat:v:141:y:2014:i:c:p:47-54
    DOI: 10.1016/j.agwat.2014.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414000857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kendy, Eloise & Molden, David J. & Steenhuis, Tammo S. & Liu, Changming & Wang, Jinxia, 2003. "Policies drain the North China Plain: Agricultural policy and groundwater depletion in Luancheng County, 1949-2000," IWMI Research Reports 44560, International Water Management Institute.
    2. Kendy, E. & Molden, David J. & Steenhuis, T. S. & Liu, C., 2003. "Policies drain the North China Plain: Agricultural policy and groundwater depletion in Luancheng County, 1949-2000," IWMI Research Reports H033678, International Water Management Institute.
    3. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xin & Meng, Fanqiao & Li, Hu & Wang, Ligang & Wu, Shuxia & Xiao, Guangmin & Wu, Wenliang, 2019. "Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system," Agricultural Water Management, Elsevier, vol. 211(C), pages 26-36.
    2. Huihui Zheng & Zhiting Sang & Kaige Wang & Yan Xu & Zhaoyang Cai, 2022. "Distribution of Irrigated and Rainfed Agricultural Land in a Semi-Arid Sandy Area," Land, MDPI, vol. 11(10), pages 1-13, September.
    3. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    4. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    5. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francois Molle & Jeremy Berkoff, 2009. "Cities vs. agriculture: A review of intersectoral water re‐allocation," Natural Resources Forum, Blackwell Publishing, vol. 33(1), pages 6-18, February.
    2. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2005. "Rural Water Saving Technology Adoption in Northern China: An Analysis of Survey Data," 2005 Annual meeting, July 24-27, Providence, RI 19437, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Wang, J. & Huang, J. & Blanke, A. & Huang, Q. & Rozelle, S., 2007. "The development, challenges and management of groundwater in rural China," IWMI Books, Reports H040041, International Water Management Institute.
    4. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    5. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    6. Hongbo Zhang & Vijay P. Singh & Dongyong Sun & Qijun Yu & Wei Cao, 2017. "Has water-saving irrigation recovered groundwater in the Hebei Province plains of China?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(4), pages 534-552, July.
    7. Ajaz, Ali & Karimi, Poolad & Cai, Xueliang & De Fraiture, Charlotte & Akhter, Muhammad Saleem, 2019. "Statistical Data Collection Methodologies of Irrigated Areas and Their Limitations: A Review," OSF Preprints cmahg, Center for Open Science.
    8. Rajesh Kumar Soothar & Wenying Zhang & Binhui Liu & Moussa Tankari & Chao Wang & Li Li & Huanli Xing & Daozhi Gong & Yaosheng Wang, 2019. "Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    9. Jia, Xiangping & Piotrowski, Stephan, 2006. "Land property, tenure security and credit access: a historical perspective of change processes in China," Research in Development Economics and Policy (Discussion Paper Series) 9083, Universitaet Hohenheim, Department of Agricultural Economics and Social Sciences in the Tropics and Subtropics.
    10. Lohmar, B. & Huang, Q. & Lei, B. & Gao, Z., 2007. "Water pricing policies and recent reforms in China: the conflict between conservation and other policy goals," IWMI Books, Reports H040610, International Water Management Institute.
    11. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    12. Xingguo Mo & Ruiping Guo & Suxia Liu & Zhonghui Lin & Shi Hu, 2013. "Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain," Climatic Change, Springer, vol. 120(1), pages 299-312, September.
    13. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    14. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Li, Sien, 2015. "A dynamic surface conductance to predict crop water use from partial to full canopy cover," Agricultural Water Management, Elsevier, vol. 150(C), pages 1-8.
    15. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    16. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    17. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    18. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:141:y:2014:i:c:p:47-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.