IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423005218.html
   My bibliography  Save this article

Soil moisture forecasting for precision irrigation management using real-time electricity consumption records

Author

Listed:
  • Feng, Xudong
  • Bi, Shaojie
  • Li, Hongjun
  • Qi, Yongqing
  • Chen, Suying
  • Shao, Liwei

Abstract

The installation of the smart electricity meters (SEMs) to the high-density pumping wells in the North China Plain (NCP) provided a method to control the groundwater withdraw. The record in real-time electricity consumption from SEMs also provided an alternative method to forecast soil moisture to make irrigation decisions to improve irrigation efficiency. The irrigation timing and the irrigation amount could be obtained on-line from the SEMs based on the coefficients obtained for electricity-to-water conversion (E-Wc). The real-time recordings in the irrigation timing and amounts were further used to forecast the next irrigation timing and amount based on the water rights per area of land, the lower limit of soil water contents for different crops at their different growing stages and online meteorological data. A smartphone app was developed based on this framework. The running of the app to simulate soil water contents based on the soil water balance equation was supported by databases on soil texture, crop coefficients, water rights, E-Wc and threshold soil water content values as well as the real-time collection of electricity consumption and meteorological data. The simulated real-time soil water contents were shown on the mobile phone screen and could be compared with the threshold values for making irrigation decisions for users. The accuracy in forecasting the soil water contents using the methods developed in this framework was tested under different irrigation schedules for winter wheat and summer maize during 2018–2019 and 2021–2022, and the app was tested for three locations starting from sowing winter wheat in October 2022 to April in 2023. The results showed that the app could be easily run, and precise real-time soil water contents were simulated. With the application of the pumping well renovation project in the NCP, most of the pumping wells were installed with the SEMs, and using SEMs for groundwater pumping control and irrigation decisions should be possible.

Suggested Citation

  • Feng, Xudong & Bi, Shaojie & Li, Hongjun & Qi, Yongqing & Chen, Suying & Shao, Liwei, 2024. "Soil moisture forecasting for precision irrigation management using real-time electricity consumption records," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005218
    DOI: 10.1016/j.agwat.2023.108656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    2. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    3. Li, Hongjun & Li, Jiazhen & Shen, Yanjun & Zhang, Xiying & Lei, Yuping, 2018. "Web-based irrigation decision support system with limited inputs for farmers," Agricultural Water Management, Elsevier, vol. 210(C), pages 279-285.
    4. Alonso Campos, J.C. & Jiménez-Bello, M.A. & Martínez Alzamora, F., 2020. "Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.
    6. Shah, Tushaar & Bhatt, Sonal & Shah, R.K. & Talati, Jayesh, 2008. "Groundwater governance through electricity supply management: Assessing an innovative intervention in Gujarat, western India," Agricultural Water Management, Elsevier, vol. 95(11), pages 1233-1242, November.
    7. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    8. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    9. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xuguang & Zhang, Baoyuan & Dai, Menglei & Jing, Cuijiao & Ma, Kai & Tang, Boyi & Li, Kejiang & Dang, Hongkai & Gu, Limin & Zhen, Wenchao & Gu, Xiaohe, 2024. "Accurate irrigation decision-making of winter wheat at the filling stage based on UAV hyperspectral inversion of leaf water content," Agricultural Water Management, Elsevier, vol. 306(C).
    2. Xuan Fang & Jie Yang, 2025. "Implementation and Validation of an Electricity-Driven Water Conservation Method for Plain-Region Irrigation: A Control Method Based on Power-Consumption Feedback," Sustainability, MDPI, vol. 17(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    2. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    3. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Sun, Xuguang & Zhang, Baoyuan & Dai, Menglei & Jing, Cuijiao & Ma, Kai & Tang, Boyi & Li, Kejiang & Dang, Hongkai & Gu, Limin & Zhen, Wenchao & Gu, Xiaohe, 2024. "Accurate irrigation decision-making of winter wheat at the filling stage based on UAV hyperspectral inversion of leaf water content," Agricultural Water Management, Elsevier, vol. 306(C).
    5. Yan, Zhenxing & Zhang, Wenying & Liu, Xiuwei & Wang, Qingsuo & Liu, Binhui & Mei, Xurong, 2024. "Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
    6. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Zhang, Xueliang & Ding, Beibei & Hou, Yonghao & Feng, Puyu & Liu, De Li & Srinivasan, Raghavan & Chen, Yong, 2024. "Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions," Agricultural Water Management, Elsevier, vol. 292(C).
    8. Zhang, Xiying & Uwimpaye, Fasilate & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Sun, Hongyong & Liu, Xiuwei, 2021. "Water productivity improvement in summer maize – A case study in the North China Plain from 1980 to 2019," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Li, Haotian & Liu, Na & Shao, Liwei & Liu, Xiuwei & Sun, Hongyong & Chen, Suying & Zhang, Xiying, 2025. "Changes in root growth and water uptake contribute to the yield and water productivity improvement in winter wheat during the past three decades: A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 313(C).
    10. Liu, Zimeng & Gao, Congshuai & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Niu, Junfang & Zhang, Xiying, 2024. "Effects of long-term saline water irrigation on soil salinity and crop production of winter wheat-maize cropping system in the North China Plain: A case study," Agricultural Water Management, Elsevier, vol. 303(C).
    11. Luo, Jianmei & Guo, Ying & Qi, Yongqing & Shen, Yanjun, 2025. "Pathways to balancing water and food for agricultural sustainable development in the Beijing-Tianjin-Hebei Region, China," Agricultural Water Management, Elsevier, vol. 310(C).
    12. Liu, Xiao & Yang, Dawen, 2021. "Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Zhang, Yucui & Lei, Huimin & Zhao, Wenguang & Shen, Yanjun & Xiao, Dengpan, 2018. "Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain," Agricultural Water Management, Elsevier, vol. 198(C), pages 53-64.
    14. Zhang, Luchen & Cao, Yuan & Qian, Weihao & Tian, Junning & Huang, Shengshi & Qiu, Xiaolei & Liu, Bing & Tang, Liang & Xiao, Liujun & Cao, Weixing & Zhu, Yan & Liu, Leilei, 2025. "Spatiotemporal optimization of irrigation practices for winter wheat in China: Rationale, implications, and solutions," Agricultural Water Management, Elsevier, vol. 308(C).
    15. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    18. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    19. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    20. Smith, Michael Graham & Urpelainen, Johannes, 2016. "Rural electrification and groundwater pumps in India: Evidence from the 1982–1999 period," Resource and Energy Economics, Elsevier, vol. 45(C), pages 31-45.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.