IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v313y2025ics0378377425001969.html
   My bibliography  Save this article

Changes in root growth and water uptake contribute to the yield and water productivity improvement in winter wheat during the past three decades: A case study in the North China Plain

Author

Listed:
  • Li, Haotian
  • Liu, Na
  • Shao, Liwei
  • Liu, Xiuwei
  • Sun, Hongyong
  • Chen, Suying
  • Zhang, Xiying

Abstract

Over the past three decades the yield and water productivity (WP) of winter wheat have significantly improved in the North China Plain (NCP). The contribution of root systems to these improvements should be understood to develop future strategies for breeding and field management. Continuous root sampling and soil water monitoring were conducted for a long-term irrigation experiment on winter wheat from 1992 to 2023 at the Luancheng Agroecological Experimental Station in the NCP. Three irrigation treatments were selected to represent different water supply conditions, i.e. severe water deficit (SD, no irrigation), moderate water deficit (MD, irrigation of 120–180 mm) and adequate water supply (AW, irrigation of 240–335 mm). For winter wheat, yield increased averagely by 35.0 %, 35.1 % and 42.9 % on average, and WP increased by 19.2 %, 23.2 % and 19.3 % under SD, MD and AW, respectively, from 1992–2023. Corresponding to the improvements in yield and WP, the total root length (TRL) at maturity was decreased by 6.6 %, 7.8 % and 26.2 % under SD, MD and AW, respectively. The reduction in the root length density (RLD) of the 0–40 cm soil layer was 47.4 %, which corresponded to an increase in RLD of 27.7 % in the 40–100 cm layer and 17.5 % in the 100–200 cm layer on average under the three water supply conditions. Redundant root growth in the shallow soil profile decreased without affecting soil water use in the deep soil layer: the root efficiency in water uptake (RE) continuously increased at a rate of 0.30–0.51 10−3 m3 km−1 yr−1, and the proportion of soil water depletion that contributed to crop evapotranspiration during the reproductive stage of winter wheat increased from 50.9 %–72.8 % in 1992–1999 to 61.1–78.1 % in 2010–2023 under the three water supply conditions. Optimized distribution of seasonal evapotranspiration increased biomass allocation to grains by 30.0 % for SD, 17.5 % for MD, and 27.0 % for AW from the 1992–2023, whereas the root: shoot ratio (R/S) decreased by 17.0 % for SD, 25.3 % for MD and 22.4 % for AW on average. The results suggest that reducing redundant root growth in the shallow soil profile without affecting soil water use in the deep soil profile could result in a relatively high RE combined with relatively low R/S, thereby reducing root carbohydrate consumption and improving the overall yield and WP of winter wheat.

Suggested Citation

  • Li, Haotian & Liu, Na & Shao, Liwei & Liu, Xiuwei & Sun, Hongyong & Chen, Suying & Zhang, Xiying, 2025. "Changes in root growth and water uptake contribute to the yield and water productivity improvement in winter wheat during the past three decades: A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001969
    DOI: 10.1016/j.agwat.2025.109482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Lu & Li, Haotian & Liu, Na & Lu, Yang & Shao, Liwei & Chen, Suying & Zhang, Xiying, 2024. "Water use characteristics and drought tolerant ability of different winter wheat cultivars assessed under whole growth circle and at seedling stage," Agricultural Water Management, Elsevier, vol. 300(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    4. Kang, Jian & Ding, Risheng & Chen, Jinliang & Wu, Siyu & Gao, Weichen & Wen, Zilu & Tong, Ling & Du, Taisheng, 2025. "Crop root system phenotyping with high water-use efficiency and its targeted precision regulation: Present and prospect," Agricultural Water Management, Elsevier, vol. 309(C).
    5. Zhang, Xiying & Uwimpaye, Fasilate & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Sun, Hongyong & Liu, Xiuwei, 2021. "Water productivity improvement in summer maize – A case study in the North China Plain from 1980 to 2019," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Deliang Kong & Junjian Wang & Huifang Wu & Oscar J. Valverde-Barrantes & Ruili Wang & Hui Zeng & Paul Kardol & Haiyan Zhang & Yulong Feng, 2019. "Nonlinearity of root trait relationships and the root economics spectrum," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Zhuang, Tingxuan & Ata-UI-Karim, Syed Tahir & Zhao, Ben & Liu, Xiaojun & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Cao, Qiang, 2024. "Investigating the impacts of different degrees of deficit irrigation and nitrogen interactions on assimilate translocation, yield, and resource use efficiencies in winter wheat," Agricultural Water Management, Elsevier, vol. 304(C).
    8. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Wang, Li & Liu, Xiaoli & Liu, Xuejing & Bao, Xiaoyuan & Zhang, Xuecheng & Yin, Baozhong & Wang, Wentao & Wang, Yandong & Zhen, Wenchao, 2024. "Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain," Agricultural Water Management, Elsevier, vol. 294(C).
    10. Huang, Zhongdong & Zhang, Xiaoxian & Ashton, Rhys W. & Hawkesford, Malcom J. & Richard Whalley, W., 2023. "Root phenotyping and root water uptake calculation using soil water contents measured in a winter wheat field," Agricultural Water Management, Elsevier, vol. 290(C).
    11. Feng, Suwei & Ding, Weihua & Shi, Chenchen & Zhu, Xiaoling & Hu, Tiezhu & Ru, Zhengang, 2023. "Optimizing the spatial distribution of roots by supplemental irrigation to improve grain yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    13. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
    3. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Feng, Xudong & Bi, Shaojie & Li, Hongjun & Qi, Yongqing & Chen, Suying & Shao, Liwei, 2024. "Soil moisture forecasting for precision irrigation management using real-time electricity consumption records," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    6. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    8. Xiulu Sun & Yizan Li & Marius Heinen & Henk Ritzema & Petra Hellegers & Jos van Dam, 2022. "Fertigation Strategies to Improve Water and Nitrogen Use Efficiency in Surface Irrigation System in the North China Plain," Agriculture, MDPI, vol. 13(1), pages 1-23, December.
    9. Zhang, Xiying & Uwimpaye, Fasilate & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Sun, Hongyong & Liu, Xiuwei, 2021. "Water productivity improvement in summer maize – A case study in the North China Plain from 1980 to 2019," Agricultural Water Management, Elsevier, vol. 247(C).
    10. Liu, Zimeng & Gao, Congshuai & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Niu, Junfang & Zhang, Xiying, 2024. "Effects of long-term saline water irrigation on soil salinity and crop production of winter wheat-maize cropping system in the North China Plain: A case study," Agricultural Water Management, Elsevier, vol. 303(C).
    11. Zhang, Fan & Chen, Mengru & Fu, Jintao & Zhang, Xiangzhu & Li, Yuan & Shao, Yating & Xing, Yingying & Wang, Xiukang, 2023. "Coupling effects of irrigation amount and fertilization rate on yield, quality, water and fertilizer use efficiency of different potato varieties in Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Wang, Yingxin & Guo, Qin & Xu, Yirui & Zhang, Peng & Cai, Tie & Jia, Zhikuan, 2022. "Optimizing urea deep placement to rainfall can maximize crop water-nitrogen productivity and decrease nitrate leaching in winter wheat," Agricultural Water Management, Elsevier, vol. 274(C).
    13. Luo, Jianmei & Guo, Ying & Qi, Yongqing & Shen, Yanjun, 2025. "Pathways to balancing water and food for agricultural sustainable development in the Beijing-Tianjin-Hebei Region, China," Agricultural Water Management, Elsevier, vol. 310(C).
    14. Wei, Shiyu & Kuang, Naikun & Jiao, Fengli & Zong, Rui & Li, Quanqi, 2023. "Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Zhang, Yucui & Lei, Huimin & Zhao, Wenguang & Shen, Yanjun & Xiao, Dengpan, 2018. "Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain," Agricultural Water Management, Elsevier, vol. 198(C), pages 53-64.
    16. Zhang, Luchen & Cao, Yuan & Qian, Weihao & Tian, Junning & Huang, Shengshi & Qiu, Xiaolei & Liu, Bing & Tang, Liang & Xiao, Liujun & Cao, Weixing & Zhu, Yan & Liu, Leilei, 2025. "Spatiotemporal optimization of irrigation practices for winter wheat in China: Rationale, implications, and solutions," Agricultural Water Management, Elsevier, vol. 308(C).
    17. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).
    18. Nicolette Matthews & Bennie Grové & Johannes Hendrikus Barnard, 2025. "Economic Analysis of Segmented Soil Salinity Management Using Current Irrigation Technology," Agriculture, MDPI, vol. 15(8), pages 1-14, April.
    19. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    20. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425001969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.