IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v115y2012icp232-241.html
   My bibliography  Save this article

Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China

Author

Listed:
  • Liu, Haijun
  • Yang, Huiying
  • Zheng, Jianhua
  • Jia, Dongdong
  • Wang, Jun
  • Li, Yan
  • Huang, Guanhua

Abstract

A two-year field experiment was conducted with drip irrigation and plastic mulch to investigate an appropriate irrigation management strategy for chili pepper (Capsicum annuum L.). Five treatments, with the soil matric potential (SMP) threshold range of −10 to −50kPa at intervals of 10kPa, were applied in this study and are correspondingly referred to as T1 to T5. Leaf area index, plant height, soil water content, yield, and total soluble solids (TSS) were measured, and seasonal crop evapotranspiration (ET), water productivity (WP), and irrigation water productivity (IWP) were computed regularly. Results showed that the differences in leaf area index, plant height, above-ground biomass, and crop yield in treatments T1 though T4 were similar (P>0.05), but higher (P<0.05) than those of treatment T5. Irrigation amount and crop ET generally decreased with decreasing SMP threshold. Threshold values with SMPs from −10kPa to −30kPa caused a reduction of irrigation amount by 22–43% and crop ET reduction by 11–25%. Higher TSS, larger percentage of marketable fruits, and higher WP and IWP were found for treatments T3 and T4 in both growing seasons. The highest SMP threshold (−10kPa) and lowest SMP threshold (−50kPa) greatly reduced the WP and IWP. Therefore, a SMP threshold range of −30kPa to −40kPa at 20cm depth was recommended for irrigation management of chili pepper under mulched-drip irrigation conditions in the arid region of Northwest China.

Suggested Citation

  • Liu, Haijun & Yang, Huiying & Zheng, Jianhua & Jia, Dongdong & Wang, Jun & Li, Yan & Huang, Guanhua, 2012. "Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China," Agricultural Water Management, Elsevier, vol. 115(C), pages 232-241.
  • Handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:232-241
    DOI: 10.1016/j.agwat.2012.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Zhongkui & Wang, Yajun & Jiang, Wenlan & Wei, Xinghu, 2006. "Evaporation and evapotranspiration in a watermelon field mulched with gravel of different sizes in northwest China," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 173-184, March.
    2. Liu, Haijun & Yu, Lipeng & Luo, Yu & Wang, Xiangping & Huang, Guanhua, 2011. "Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 483-492, February.
    3. Li, Sien & Kang, Shaozhong & Li, Fusheng & Zhang, Lu, 2008. "Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China," Agricultural Water Management, Elsevier, vol. 95(11), pages 1214-1222, November.
    4. Liang, Yin-Li & Wu, Xing & Zhu, Juan-Juan & Zhou, Mao-Juan & Peng, Qiang, 2011. "Response of hot pepper (Capsicum annuum L.) to mulching practices under planted greenhouse condition," Agricultural Water Management, Elsevier, vol. 99(1), pages 111-120.
    5. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.
    6. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    7. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    8. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    9. Ityel, Eviatar & Lazarovitch, Naftali & Silberbush, Moshe & Ben-Gal, Alon, 2012. "An artificial capillary barrier to improve root-zone conditions for horticultural crops: Response of pepper plants to matric head and irrigation water salinity," Agricultural Water Management, Elsevier, vol. 105(C), pages 13-20.
    10. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras, J.I. & Alonso, F. & Cánovas, G. & Baeza, R., 2017. "Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects," Agricultural Water Management, Elsevier, vol. 183(C), pages 26-34.
    2. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    3. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    5. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    7. Xu, Xu & Jiang, Yao & Liu, Minghuan & Huang, Quanzhong & Huang, Guanhua, 2019. "Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin," Agricultural Water Management, Elsevier, vol. 211(C), pages 152-164.
    8. Tang, Ruoling & Supit, Iwan & Hutjes, Ronald & Zhang, Fen & Wang, Xiaozhong & Chen, Xuanjing & Zhang, Fusuo & Chen, Xinping, 2023. "Modelling growth of chili pepper (Capsicum annuum L.) with the WOFOST model," Agricultural Systems, Elsevier, vol. 209(C).
    9. Zamljen, Tilen & Zupanc, Vesna & Slatnar, Ana, 2020. "Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq," Agricultural Water Management, Elsevier, vol. 234(C).
    10. Teodor Stan & Neculai Munteanu & Gabriel-Ciprian Teliban & Alexandru Cojocaru & Vasile Stoleru, 2021. "Fertilization Management Improves the Yield and Capsaicinoid Content of Chili Peppers," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    11. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    13. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    15. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    2. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    3. Zheng, Jianhua & Huang, Guanhua & Jia, Dongdong & Wang, Jun & Mota, Mariana & Pereira, Luis S. & Huang, Quanzhong & Xu, Xu & Liu, Haijun, 2013. "Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 129(C), pages 181-193.
    4. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    5. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    7. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    8. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    9. Abdelaziz M. Okasha & Nehad Deraz & Adel H. Elmetwalli & Salah Elsayed & Mayadah W. Falah & Aitazaz Ahsan Farooque & Zaher Mundher Yaseen, 2022. "Effects of Irrigation Method and Water Flow Rate on Irrigation Performance, Soil Salinity, Yield, and Water Productivity of Cauliflower," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    10. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    11. Jha, Shiva K. & Gao, Yang & Liu, Hao & Huang, Zhongdong & Wang, Guangshuai & Liang, Yueping & Duan, Aiwang, 2017. "Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China," Agricultural Water Management, Elsevier, vol. 182(C), pages 139-150.
    12. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    13. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    14. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    15. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    16. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    17. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    18. Zhaoyang Li & Rui Zong & Tianyu Wang & Zhenhua Wang & Jinzhu Zhang, 2021. "Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube ( Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation," Agriculture, MDPI, vol. 11(12), pages 1-16, November.
    19. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    20. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:232-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.