IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v102y2011i1p25-34.html
   My bibliography  Save this article

Estimating soil moisture storage change using quasi-terrestrial water balance method

Author

Listed:
  • Moiwo, Juana Paul
  • Tao, Fulu
  • Lu, Wenxi

Abstract

Soil moisture is a critical consideration for agriculture and hydrology especially in semi-arid regions. Like groundwater, soil moisture measurements may not always available in sufficient distributions for effective monitoring of agricultural operations. This paper presents a quasi-terrestrial water balance method, driven by common hydro-climatic data, to estimate soil moisture. The method is tested for the ≈152000km2 floodplain region of Hai River Basin using 48 consecutive months (January 2003–December 2006) of data. Comparisons of the estimated and field-measured soil moisture storage and storage change show favorable agreements at monthly, seasonal yearly cycles. This suggests that the proposed method reliably detects soil moisture storage signal in the tested region. The analysis shows a narrowing soil moisture storage change in the study area. Further analysis indicates that the narrowing in soil moisture storage change is sustained by groundwater storage loss via irrigation. There is also storage loss to the atmosphere via irrigation-driven evapotranspiration. Apparently, storage gain occurs in summer while storage loss occurs in winter. However, an overall storage loss exists in the tested floodplain region of Hai River Basin.

Suggested Citation

  • Moiwo, Juana Paul & Tao, Fulu & Lu, Wenxi, 2011. "Estimating soil moisture storage change using quasi-terrestrial water balance method," Agricultural Water Management, Elsevier, vol. 102(1), pages 25-34.
  • Handle: RePEc:eee:agiwat:v:102:y:2011:i:1:p:25-34
    DOI: 10.1016/j.agwat.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yanmin & Yang, Yonghui & Moiwo, Juana Paul & Hu, Yukun, 2010. "Estimation of irrigation requirement for sustainable water resources reallocation in North China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1711-1721, November.
    2. Yang, Yonghui & Watanabe, Masataka & Zhang, Xiying & Zhang, Jiqun & Wang, Qinxue & Hayashi, Seiji, 2006. "Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 25-44, April.
    3. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan Wang & Chao Zhang & Li Li & Wenju Yun & Jiani Ma & Lulu Gao, 2021. "Delimitating the Ecological Spaces for Water Conservation Services in Jilin Province of China," Land, MDPI, vol. 10(10), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bingfang & Jiang, Liping & Yan, Nana & Perry, Chris & Zeng, Hongwei, 2014. "Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China," Agricultural Water Management, Elsevier, vol. 145(C), pages 145-153.
    2. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    4. Rui Zhao & Hualing He & Ning Zhang, 2015. "Regional Water Footprint Assessment: A Case Study of Leshan City," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    5. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    6. Bahi, Dhilanveer Teja Singh & Paavola, Jouni, 2023. "Liquid petroleum gas access and consumption expenditure: measuring energy poverty through wellbeing and gender equality in India," LSE Research Online Documents on Economics 120564, London School of Economics and Political Science, LSE Library.
    7. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    8. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    9. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    10. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    11. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    12. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    13. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    14. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    15. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    16. Qifeng Huang & Longhuan Wang & Binghao Jia & Xin Lai & Qing Peng, 2023. "Impact of Climate Change on the Spatio-Temporal Variation in Groundwater Storage in the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    17. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    18. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    19. Utset, Angel & Velicia, Herminio & del Rio, Blanca & Morillo, Rodrigo & Centeno, Jose Antonio & Martinez, Juan Carlos, 2007. "Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 11-21, December.
    20. Shajari, Mahsa Aghhavani & Moghaddam, Parviz Rezvani & Ghorbani, Reza & Koocheki, Alireza, 2022. "Does nutrient and irrigation managements alter the quality and yield of saffron (Crocus sativus L.)?," Agricultural Water Management, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:102:y:2011:i:1:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.