IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v204y2023ics0308521x2200172x.html
   My bibliography  Save this article

Optimizing nitrogen application and sowing date can improve environmental sustainability and economic benefit in wheat-rice rotation

Author

Listed:
  • Fu, Zhaopeng
  • Zhang, Ke
  • Zhang, Jiayi
  • Zhang, Yu
  • Cao, Qiang
  • Tian, Yongchao
  • Zhu, Yan
  • Cao, Weixing
  • Liu, Xiaojun

Abstract

In wheat-rice rotation, late sowing and excessive nitrogen (N) application lead to low annual yield and additional fertilizer waste. A comprehensive assessment of yield sustainability, N use efficiency, N balancing mechanism, and economic benefit is urgent.

Suggested Citation

  • Fu, Zhaopeng & Zhang, Ke & Zhang, Jiayi & Zhang, Yu & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Optimizing nitrogen application and sowing date can improve environmental sustainability and economic benefit in wheat-rice rotation," Agricultural Systems, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:agisys:v:204:y:2023:i:c:s0308521x2200172x
    DOI: 10.1016/j.agsy.2022.103536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X2200172X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shuaikang & Lin, Xiang & Wang, Weiyan & Zhang, Baojun & Wang, Dong, 2022. "Supplemental irrigation increases grain yield, water productivity, and nitrogen utilization efficiency by improving nitrogen nutrition status in winter wheat," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Shi, Yifan & Lou, Yunsheng & Zhang, Yiwei & Xu, Zufei, 2021. "Quantitative contributions of climate change, new cultivars adoption, and management practices to yield and global warming potential in rice-winter wheat rotation ecosystems," Agricultural Systems, Elsevier, vol. 190(C).
    3. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    4. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Wang, Zhen & Zhang, Xiuying & Liu, Lei & Wang, Shanqian & Zhao, Limin & Wu, Xiaodi & Zhang, Wuting & Huang, Xianjin, 2020. "Inhibition of methane emissions from Chinese rice fields by nitrogen deposition based on the DNDC model," Agricultural Systems, Elsevier, vol. 184(C).
    6. Ding, Yimin & Wang, Weiguang & Zhuang, Qianlai & Luo, Yufeng, 2020. "Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Xiuming Zhang & Baojing Gu & Hans Grinsven & Shu Kee Lam & Xia Liang & Mei Bai & Deli Chen, 2020. "Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Gawdiya & Dinesh Kumar & Yashbir S. Shivay & Arti Bhatia & Shweta Mehrotra & Mandapelli Sharath Chandra & Anita Kumawat & Rajesh Kumar & Adam H. Price & Nandula Raghuram & Himanshu Pathak & Ma, 2023. "Field-Based Evaluation of Rice Genotypes for Enhanced Growth, Yield Attributes, Yield and Grain Yield Efficiency Index in Irrigated Lowlands of the Indo-Gangetic Plains," Sustainability, MDPI, vol. 15(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Abdollahzadeh, Gholamhossein & Sharifzadeh, Mohammad Sharif & Sklenička, Petr & Azadi, Hossein, 2023. "Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach," Agricultural Systems, Elsevier, vol. 204(C).
    3. Xinxin Song & Huanhuan Pu & Yingying Zhang & Xuguang Liu & Yongqiang Zhao, 2023. "Characteristics of nitrogen flow and environmental cost of reactive nitrogen in the source area of the Yellow River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13379-13397, November.
    4. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    5. Nittaya Cha-un & Amnat Chidthaisong & Kazuyuki Yagi & Sirintornthep Towprayoon, 2021. "Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    6. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    7. Adam, M. & Wery, J. & Leffelaar, P.A. & Ewert, F. & Corbeels, M. & Van Keulen, H., 2013. "A systematic approach for re-assembly of crop models: An example to simulate pea growth from wheat growth," Ecological Modelling, Elsevier, vol. 250(C), pages 258-268.
    8. Utset, Angel & Velicia, Herminio & del Rio, Blanca & Morillo, Rodrigo & Centeno, Jose Antonio & Martinez, Juan Carlos, 2007. "Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 11-21, December.
    9. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    10. Timsina, J. & Wolf, J. & Guilpart, N. & van Bussel, L.G.J. & Grassini, P. & van Wart, J. & Hossain, A. & Rashid, H. & Islam, S. & van Ittersum, M.K., 2018. "Can Bangladesh produce enough cereals to meet future demand?," Agricultural Systems, Elsevier, vol. 163(C), pages 36-44.
    11. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    12. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    13. Kadiyala, M.D.M. & Jones, J.W. & Mylavarapu, R.S. & Li, Y.C. & Reddy, M.D., 2015. "Identifying irrigation and nitrogen best management practices for aerobic rice–maize cropping system for semi-arid tropics using CERES-rice and maize models," Agricultural Water Management, Elsevier, vol. 149(C), pages 23-32.
    14. Dai, Yulong & Liao, Zhenqi & Lai, Zhenlin & Bai, Zhentao & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Interactive effects of planting pattern, supplementary irrigation and planting density on grain yield, water-nitrogen use efficiency and economic benefit of winter wheat in a semi-humid but drought-pr," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Xin Dong & Tianyi Zhang & Xiaoguang Yang & Tao Li, 2023. "Breeding priorities for rice adaptation to climate change in Northeast China," Climatic Change, Springer, vol. 176(6), pages 1-19, June.
    16. Zhang, Ziya & Li, Yi & Chen, Xinguo & Wang, Yanzi & Niu, Ben & Liu, De Li & He, Jianqiang & Pulatov, Bakhtiyor & Hassan, Ishtiaq & Meng, Qingtao, 2023. "Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future," Agricultural Systems, Elsevier, vol. 205(C).
    17. Ying Ye & Kaocheng Zhao & Jun Ma & Lifen Huang & Hengyang Zhuang, 2022. "Post-Anthesis Nitrogen Dynamic Models and Characteristics of Rice Combined with Sowing Date and Nitrogen Application Rate," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    18. Timsina, J. & Buresh, R.J. & Dobermann, A. & Dixon, J. (ed.), 2011. "Rice-maize systems in Asia: current situation and potential," IRRI Books, International Rice Research Institute (IRRI), number 164490.
    19. Malik, Wafa & Dechmi, Farida, 2019. "DSSAT modelling for best irrigation management practices assessment under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 27-43.
    20. Kothari, Kritika & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Porter, Dana O. & Munster, Clyde L., 2019. "Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes," Agricultural Systems, Elsevier, vol. 170(C), pages 49-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:204:y:2023:i:c:s0308521x2200172x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.