IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-05-14.html
   My bibliography  Save this article

Rooftop PV System Policy and Implementation Study for a Household in Indonesia

Author

Listed:
  • Elieser Tarigan

    (Department of Electrical Engineering, and Center for Environmental and Renewable Energy Studies, University of Surabaya (UBAYA), Indonesia.)

Abstract

This paper discusses the recent solar rooftop photovoltaic (PV) system policies in Indonesia, particularly for the implementation of the residential sector. The aim of this study is to demonstrate the rooftop PV system for a household based on the current related policies. The study is conducted by literature reviews and computer simulation for a typical rooftop PV system for residential in Surabaya, Indonesia. The most recent solar energy policy in Indonesia is the Ministry of Energy and Mineral Resources Regulation No. 49, the year 2018, which establishes net metering for the residential, commercial and industrial National Grid (PLN) customers that have excess power from solar rooftop installations. The simulation shows the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m2 and 4.82 kWh/m2 with an average of 5.54 kWh/m2/day. Energy output by 3 kWp rooftop PV system in Surabaya is found about 4,200 kWh/year, with an average of 11.67 kWh/day. Economically, under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period.

Suggested Citation

  • Elieser Tarigan, 2020. "Rooftop PV System Policy and Implementation Study for a Household in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 110-115.
  • Handle: RePEc:eco:journ2:2020-05-14
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/9539/5264
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/9539/5264
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    2. Imad Ibrik & Fadia Hashaika, 2019. "Techno-Economic Impact of Grid-Connected Rooftop Solar PV System for Schools in Palestine: A Case Study of Three Schools," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 291-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elieser Tarigan, 2023. "Financial Analysis of Solar Rooftop PV System: Case Study in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 15-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    2. Imad H. Ibrik, 2020. "Techno-economic Feasibility of Energy Supply of Water Pumping in Palestine by Photovoltaic-systems, Diesel Generators and Electric Grid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 69-75.
    3. Zhang, Haoran & Yan, Jinyue & Yu, Qing & Obersteiner, Michael & Li, Wenjing & Chen, Jinyu & Zhang, Qiong & Jiang, Mingkun & Wallin, Fredrik & Song, Xuan & Wu, Jiang & Wang, Xin & Shibasaki, Ryosuke, 2021. "1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown," Applied Energy, Elsevier, vol. 283(C).
    4. Xu, Zhitao & Elomri, Adel & Al-Ansari, Tareq & Kerbache, Laoucine & El Mekkawy, Tarek, 2022. "Decisions on design and planning of solar-assisted hydroponic farms under various subsidy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    6. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    7. Chen, Han & Chen, Wenying, 2021. "Status, trend, economic and environmental impacts of household solar photovoltaic development in China: Modelling from subnational perspective," Applied Energy, Elsevier, vol. 303(C).
    8. Patrick Gregory B. Jara & Michael T. Castro & Eugene A. Esparcia & Joey D. Ocon, 2020. "Quantifying the Techno-Economic Potential of Grid-Tied Rooftop Solar Photovoltaics in the Philippine Industrial Sector," Energies, MDPI, vol. 13(19), pages 1-20, September.
    9. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    10. Manh-Hai Pham & Vu Minh Phap & Nguyen Ngoc Trung & Tran Thanh Son & Duong Trung Kien & Vu Thi Anh Tho, 2022. "A Study on the Impact of Various Meteorological Data on the Design Performance of Rooftop Solar Power Projects in Vietnam: A Case Study of Electric Power University," Energies, MDPI, vol. 15(19), pages 1-17, September.
    11. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Ke Shi & Chuangyi Li & Choongwan Koo, 2021. "A Techno-Economic Feasibility Analysis of Mono-Si and Poly-Si Photovoltaic Systems in the Rooftop Area of Commercial Building under the Feed-In Tariff Scheme," Sustainability, MDPI, vol. 13(9), pages 1-22, April.

    More about this item

    Keywords

    Rooftop; PV System; Solar Energy; Residential; Indonesia;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • H41 - Public Economics - - Publicly Provided Goods - - - Public Goods
    • H50 - Public Economics - - National Government Expenditures and Related Policies - - - General
    • Z18 - Other Special Topics - - Cultural Economics - - - Public Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-05-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.