IDEAS home Printed from https://ideas.repec.org/a/das/njaigs/v8y2025i02p31-52id376.html
   My bibliography  Save this article

Artificial Intelligence (AI) for Airports: Baggage Detection and Size Estimation for Enhancing Operational Efficiency at Small and Medium-Sized Airports

Author

Listed:
  • A K M Bayazid

Abstract

The rapid expansion of global air travel has heightened the demand for automated, intelligence-driven baggage management systems capable of operating in small and medium-sized airports. This paper presents two complementary innovations: (1) a real-time baggage detection and size-estimation pipeline employing the state-of-the-art YOLOv8 deep neural network, and (2) a generative smart-luggage design framework powered by a hybrid genetic-CNN optimization. In the first task, we construct a diverse 2,000+–image dataset annotated via Roboflow and train both YOLOv8n (nano) and YOLOv8m (medium) models to classify luggage by material (e.g., hard plastic, metal, textile) and estimate physical dimensions through calibrated pixel-to-centimeter conversion. YOLOv8m achieves a mean Average Precision (mAP@0.5) of 0.805 and a size-estimation error below 8 mm, demonstrating a robust accuracy–speed tradeoff suitable for deployment on edge-compute platforms. In the second task, we encode luggage attributes (size, weight, functionality, and CNN-derived aesthetic scores) into a multi-objective genetic-algorithm fitness function. Over ten generations, our GA–CNN hybrid converges to novel luggage prototypes that balance ergonomic form factors and smart features (e.g., RFID integration). Experimental results confirm that our approach outperforms prior YOLOv5-based detectors by 12% in detection precision and yields ergonomic designs validated via user-preference surveys. Collectively, these two contributions forge a path toward fully integrated, AI-driven baggage workflows—spanning detection, handling, and personalized product design—paving the way for enhanced operational efficiency and user satisfaction in next-generation airport environment

Suggested Citation

  • A K M Bayazid, 2025. "Artificial Intelligence (AI) for Airports: Baggage Detection and Size Estimation for Enhancing Operational Efficiency at Small and Medium-Sized Airports," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 8(02), pages 31-52.
  • Handle: RePEc:das:njaigs:v:8:y:2025:i:02:p:31-52:id:376
    as

    Download full text from publisher

    File URL: https://newjaigs.com/index.php/JAIGS/article/view/376
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Day & Herbert Edelsbrunner, 1984. "Efficient algorithms for agglomerative hierarchical clustering methods," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 7-24, December.
    2. Lyon, David, 2018. "Airport automation in Australasia: A possible way forward," Journal of Airport Management, Henry Stewart Publications, vol. 12(3), pages 303-313, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu Vinte & Marcel Ausloos, 2022. "The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator," Papers 2205.00104, arXiv.org.
    2. Lerato Lerato & Thomas Niesler, 2015. "Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    3. William Day & Herbert Edelsbrunner, 1985. "Investigation of proportional link linkage clustering methods," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 239-254, December.
    4. Monika Khandelwal & Sabha Sheikh & Ranjeet Kumar Rout & Saiyed Umer & Saurav Mallik & Zhongming Zhao, 2022. "Unsupervised Learning for Feature Representation Using Spatial Distribution of Amino Acids in Aldehyde Dehydrogenase (ALDH2) Protein Sequences," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
    5. Alberto Fernández & Sergio Gómez, 2020. "Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 584-597, October.
    6. C. Finden & A. Gordon, 1985. "Obtaining common pruned trees," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 255-276, December.
    7. Quan Gan & Wang Chun Wei & David Johnstone, 2015. "A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1805-1821, November.
    8. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    9. Yuching Lu & Koki Tozuka & Goutam Chakraborty & Masafumi Matsuhara, 2021. "A Novel Item Cluster-Based Collaborative Filtering Recommendation System," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 327-346, November.
    10. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    11. Sandra Mayr & Fabian Hauser & Sujitha Puthukodan & Markus Axmann & Janett Göhring & Jaroslaw Jacak, 2020. "Statistical analysis of 3D localisation microscopy images for quantification of membrane protein distributions in a platelet clot model," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-34, June.
    12. Cheng-Chun Lee & Mikel Maron & Ali Mostafavi, 2022. "Community-scale big data reveals disparate impacts of the Texas winter storm of 2021 and its managed power outage," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    13. Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).
    14. Qiufang Shi & Xiaoyong Yan & Bin Jia & Ziyou Gao, 2020. "Freight Data-Driven Research on Evaluation Indexes for Urban Agglomeration Development Degree," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    15. Bajoulvand, Atena & Zargari Marandi, Ramtin & Daliri, Mohammad Reza & Sabzpoushan, Seyed Hojjat, 2017. "Analysis of folk music preference of people from different ethnic groups using kernel-based methods on EEG signals," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 62-70.
    16. Dongyun Nie & Michael Scriney & Xiaoning Liang & Mark Roantree, 2024. "From data acquisition to validation: a complete workflow for predicting individual customer lifetime value," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 321-341, June.
    17. Mirko Křivánek, 1986. "Computing the nearest neighbor interchange metric for unlabeled binary trees is NP-complete," Journal of Classification, Springer;The Classification Society, vol. 3(1), pages 55-60, March.
    18. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    19. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    20. Potoniec, Jedrzej & Sroka, Daniel & Pawlak, Tomasz P., 2022. "Continuous discovery of Causal nets for non-stationary business processes using the Online Miner," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1304-1320.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:das:njaigs:v:8:y:2025:i:02:p:31-52:id:376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Open Knowledge (email available below). General contact details of provider: https://newjaigs.com/index.php/JAIGS/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.