IDEAS home Printed from https://ideas.repec.org/a/cys/ecocyb/v50y2017i1p.html
   My bibliography  Save this article

Pricing Vulnerable Options with Constant Elasticity of Variance versus Stochastic Elasticity of Variance

Author

Listed:
  • Min-Ku LEE

    (Department of Mathematics, Kunsan National University Republic of Korea)

  • Sung-Jin YANG, PhD
  • Jeong-Hoon KIM

    (Department of Mathematics, Yonsei University, Seoul, Republic of Korea Republic of Korea)

Abstract

In order to handle option writer’s credit risk, a different underlying price model is required beyond the well-known Black-Scholes model. This paper adopts a recently developed model, which characterizes the 2007-2009 global financial crisis in a unique way, to determine the no-arbitrage price of European options vulnerable to writer’s default possibility. The underlying model is based on the randomization of the elasticity of variance parameter capturing the leverage or inverse leverage effect. We obtain an analytic formula explicitly for the stochastic elasticity of variance correction to the Black-Scholes price of vulnerable options and show how the correction effect is compared with the one given by the constant elasticity of variance model. The result can help to design a dynamic investment strategy reducing option writer’s credit risk more effectively.

Suggested Citation

  • Min-Ku LEE & Sung-Jin YANG, PhD & Jeong-Hoon KIM, 2017. "Pricing Vulnerable Options with Constant Elasticity of Variance versus Stochastic Elasticity of Variance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 233-247.
  • Handle: RePEc:cys:ecocyb:v:50:y:2017:i:1:p:
    as

    Download full text from publisher

    File URL: ftp://www.eadr.ro/RePEc/cys/ecocyb_pdf/ecocyb1_2017p233-247.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Ren Raw Chen & Cheng Few Lee & Han-Hsing Lee, 2020. "Empirical Performance of the Constant Elasticity Variance Option Pricing Model," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 51, pages 1903-1942, World Scientific Publishing Co. Pte. Ltd..
    3. Xu, Weidong & Xu, Weijun & Li, Hongyi & Xiao, Weilin, 2012. "A jump-diffusion approach to modelling vulnerable option pricing," Finance Research Letters, Elsevier, vol. 9(1), pages 48-56.
    4. Jean-Pierre Fouque & Yuri F. Saporito & Jorge P. Zubelli, 2014. "Multiscale Stochastic Volatility Model For Derivatives On Futures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-31.
    5. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    6. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    7. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    8. Han, Chuan-Hsiang & Molina, German & Fouque, Jean-Pierre, 2014. "McMC estimation of multiscale stochastic volatility models with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 1-11.
    9. Johnson, Herb & Stulz, Rene, 1987. "The Pricing of Options with Default Risk," Journal of Finance, American Finance Association, vol. 42(2), pages 267-280, June.
    10. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Kim, Jeong-Hoon & Yoon, Ji-Hun & Lee, Jungwoo & Choi, Sun-Yong, 2015. "On the stochastic elasticity of variance diffusions," Economic Modelling, Elsevier, vol. 51(C), pages 263-268.
    13. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    14. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Klein, Peter & Inglis, Michael, 2001. "Pricing vulnerable European options when the option's payoff can increase the risk of financial distress," Journal of Banking & Finance, Elsevier, vol. 25(5), pages 993-1012, May.
    3. Lung-Fu Chang & Mao-Wei Hung, 2006. "Valuation of vulnerable American options with correlated credit risk," Review of Derivatives Research, Springer, vol. 9(2), pages 137-165, September.
    4. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    5. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo con Riesgo de Crédito, Parte 2," CEMA Working Papers: Serie Documentos de Trabajo. 790, Universidad del CEMA.
    6. Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
    7. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    8. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    9. Marcelo Fabián Perillo, 2023. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo con Riesgo de Crédito," Revista de Análisis Económico y Financiero, Universidad de San Martín de Porres, vol. 6(02), pages 01-06.
    10. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    13. Alain Capiez, 2000. "Evaluation du crédit-bail et risque de crédit," Post-Print halshs-00587435, HAL.
    14. Li, Gang & Zhang, Chu, 2019. "Counterparty credit risk and derivatives pricing," Journal of Financial Economics, Elsevier, vol. 134(3), pages 647-668.
    15. Zonggang Ma & Chaoqun Ma & Zhijian Wu, 2022. "Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: application of Mellin transform methods," Review of Derivatives Research, Springer, vol. 25(1), pages 47-91, April.
    16. Xu, Weidong & Xu, Weijun & Li, Hongyi & Xiao, Weilin, 2012. "A jump-diffusion approach to modelling vulnerable option pricing," Finance Research Letters, Elsevier, vol. 9(1), pages 48-56.
    17. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    18. Vicky Henderson & Gechun Liang, 2011. "A Multidimensional Exponential Utility Indifference Pricing Model with Applications to Counterparty Risk," Papers 1111.3856, arXiv.org, revised Sep 2015.
    19. Riadh Belhaj, 2006. "The Valuation of Options on Bonds with Default Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 10(3-4), pages 277-306, September.
    20. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.

    More about this item

    Keywords

    Vulnerable option; Default risk; Stochastic elasticity of variance; Ornstein-Uhlenbeck process; Monte-Carlo simulation.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cys:ecocyb:v:50:y:2017:i:1:p:. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/feasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.