IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v33y2017i01p196-241_00.html

Identification And Inference On Regressions With Missing Covariate Data

Author

Listed:
  • Aucejo, Esteban M.
  • Bugni, Federico A.
  • Hotz, V. Joseph

Abstract

This paper examines the problem of identification and inference on a conditional moment condition model with missing data, with special focus on the case when the conditioning covariates are missing. We impose no assumption on the distribution of the missing data and we confront the missing data problem by using a worst case scenario approach.We characterize the sharp identified set and argue that this set is usually too complex to compute or to use for inference. Given this difficulty, we consider the construction of outer identified sets (i.e. supersets of the identified set) that are easier to compute and can still characterize the parameter of interest. Two different outer identification strategies are proposed. Both of these strategies are shown to have nontrivial identifying power and are relatively easy to use and combine for inferential purposes.

Suggested Citation

  • Aucejo, Esteban M. & Bugni, Federico A. & Hotz, V. Joseph, 2017. "Identification And Inference On Regressions With Missing Covariate Data," Econometric Theory, Cambridge University Press, vol. 33(1), pages 196-241, February.
  • Handle: RePEc:cup:etheor:v:33:y:2017:i:01:p:196-241_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466615000250/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixiong Li & Désiré Kédagni & Ismaël Mourifié, 2024. "Discordant relaxations of misspecified models," Quantitative Economics, Econometric Society, vol. 15(2), pages 331-379, May.
    2. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    3. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Jakiela,Pamela & Ozier,Owen, 2018. "Gendered language," Policy Research Working Paper Series 8464, The World Bank.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:33:y:2017:i:01:p:196-241_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.