IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v26y2010i06p1683-1718_99.html
   My bibliography  Save this article

Bias Corrections In Testing And Estimating Semiparametric, Single Index Models

Author

Listed:
  • Klein, Roger
  • Shen, Chan

Abstract

Semiparametric methods are widely employed in applied work where the ability to conduct inferences is important. To establish asymptotic normality for making inferences, bias control mechanisms are often used in implementing semiparametric estimators. The first contribution of this paper is to propose a mechanism that enables us to establish asymptotic normality with regular kernels. In so doing, we argue that the resulting estimator performs very well in finite samples. Semiparametric models are commonly estimated under a single index assumption. Because the consistency of the estimator critically depends on this assumption being correct, our second objective is to develop a test for it. To ensure that the test statistic has good size and power properties in finite samples, we employ a bias control mechanism similar to that underlying the estimator. Furthermore, we structure the test so that its form adapts to the model under the alternative hypothesis. Monte Carlo results confirm that the bias control and the adaptive feature significantly improve the performance of the test statistic in finite samples.

Suggested Citation

  • Klein, Roger & Shen, Chan, 2010. "Bias Corrections In Testing And Estimating Semiparametric, Single Index Models," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1683-1718, December.
  • Handle: RePEc:cup:etheor:v:26:y:2010:i:06:p:1683-1718_99
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466609990764/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klein, Roger & Shen, Chan & Vella, Francis, 2015. "Estimation of marginal effects in semiparametric selection models with binary outcomes," Journal of Econometrics, Elsevier, vol. 185(1), pages 82-94.
    2. Yixiao Jiang, 2020. "A Hausman Test for Partially Linear Models with an Application to Implied Volatility Surface," JRFM, MDPI, vol. 13(11), pages 1-12, November.
    3. Yixiao Jiang, 2021. "Semiparametric Estimation of a Corporate Bond Rating Model," Econometrics, MDPI, vol. 9(2), pages 1-20, May.
    4. Chan Shen & Roger Klein, 2017. "Recursive Differencing: Bias Reduction with Regular Kernels," Departmental Working Papers 201701, Rutgers University, Department of Economics.
    5. Biavaschi, Costanza, 2016. "Recovering the counterfactual wage distribution with selective return migration," Labour Economics, Elsevier, vol. 38(C), pages 59-80.
    6. Rothe, Christoph & Firpo, Sergio Pinheiro, 2013. "Semiparametric estimation and inference using doubly robust moment conditions," Textos para discussão 330, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    7. Roger Klein & Chan Shen & Francis Vella, 2011. "Semiparametric selection models with binary outcomes," CeMMAP working papers CWP30/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Chan Shen, 2019. "Recursive Differencing for Estimating Semiparametric Models," Departmental Working Papers 201903, Rutgers University, Department of Economics.
    9. Lee, Jiyon, 2015. "A semiparametric single index model with heterogeneous impacts on an unobserved variable," Journal of Econometrics, Elsevier, vol. 184(1), pages 13-36.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:06:p:1683-1718_99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.