IDEAS home Printed from https://ideas.repec.org/a/col/000577/021819.html
   My bibliography  Save this article

Gestión estratégica de costos en microrredes inteligentes: un enfoque de sostenibilidad basado en algoritmos genéticos
[Strategic Cost Management in Smart Microgrids: A Sustainability-Driven Approach Using Genetic Algorithms]

Author

Listed:
  • Joseph Sosapanta Salas

    (Institución Universitaria Pascual Bravo)

  • Ángela Melo Hidalgo

    (Universidad Nacional Abierta y a Distancia (UNAD))

Abstract

Introduction: Microgrids, conceived as autonomous power distribution systems, require an advanced controller capable of autonomously determining optimal generation sources to achieve energy self-sufficiency. Methodology: This study delves into the comprehensive optimization of a microgrid through the application of genetic algorithms, simultaneously considering economic and environmental variables within a framework of sustainable management. Two reproduction methods—mutation and crossover—were analyzed for their impact on system performance. Mutation introduces random variations that emulate the introduction of innovations, while crossover combines genetic material from successful configurations to generate potentially superior solutions. Results: Two survival methods—random selection and elitism—were evaluated, revealing that random selection enhances diversity and unpredictability, whereas elitism preserves the most efficient solutions. The results show that random mutations increase the amount of excess energy produced, while combining mutation with elitism improves system efficiency. Likewise, crossover combined with elitism yields the best performance by reproducing only with the most elite chromosome of each generation. These findings provide evidence of the applicability of genetic algorithms in strategic cost management and sustainable optimization of smart microgrids. ES Introducción: Las microrredes, concebidas como sistemas autónomos de distribución de energía, requieren un controlador avanzado capaz de decidir de forma autónoma las fuentes óptimas de generación para alcanzar la autosuficiencia energética. Metodología: Esta investigación profundiza en la optimización integral de una microrred mediante la aplicación de algoritmos genéticos, considerando simultáneamente variables económicas y ambientales dentro de un enfoque de gestión sostenible. Se analizan dos métodos de reproducción —mutación y cruce— y su influencia en el desempeño del sistema. La mutación introduce cambios aleatorios que simulan la incorporación de innovaciones, mientras que el cruce combina material genético de configuraciones exitosas para generar soluciones potencialmente superiores. Resultados: Se evaluaron dos métodos de supervivencia —selección aleatoria y elitismo—, observándose que la selección aleatoria aporta diversidad e imprevisibilidad, mientras que el elitismo preserva las soluciones más eficientes. Los resultados demuestran que las mutaciones aleatorias incrementan la energía excedente producida, mientras que la combinación de mutación y elitismo mejora la eficiencia del sistema. Asimismo, el cruce combinado con elitismo arroja el mejor rendimiento al reproducirse solo con el cromosoma más destacado de cada generación. Estos hallazgos aportan evidencia sobre la aplicabilidad de los algoritmos genéticos en la gestión estratégica de costos y en la optimización sostenible de microrredes inteligentes.

Suggested Citation

  • Joseph Sosapanta Salas & Ángela Melo Hidalgo, 2025. "Gestión estratégica de costos en microrredes inteligentes: un enfoque de sostenibilidad basado en algoritmos genéticos [Strategic Cost Management in Smart Microgrids: A Sustainability-Driven Approa," Revista Estrategia Organizacional, Universidad Nacional Abierta y a Distancia, vol. 14(2), pages 63-83, August.
  • Handle: RePEc:col:000577:021819
    DOI: 10.22490/25392786.10737
    as

    Download full text from publisher

    File URL: https://hemeroteca.unad.edu.co/index.php/revista-estrategica-organizacio/article/view/10737
    Download Restriction: None

    File URL: https://libkey.io/10.22490/25392786.10737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000577:021819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad Nacional Abierta y a Distancia (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.