IDEAS home Printed from https://ideas.repec.org/a/cii/cepiie/2015-q1-141-3.html
   My bibliography  Save this article

On the use of singular spectrum analysis for forecasting U.S. trade before, during and after the 2008 recession

Author

Listed:
  • Emmanuel Sirimal Silva
  • Hossein Hassani

Abstract

This paper is aimed at introducing the powerful, nonparametric time series analysis and forecasting technique of Singular Spectrum Analysis (SSA) for trade forecasting via an application which evaluates the impact of the 2008 recession on U.S. trade forecasting models. This research is felicitous given the magnitude of the structural break visible in the U.S. trade series following the 2008 economic crisis. Structural breaks resulting from such recessions might affect conclusions from traditional unit root tests and forecasting models which make use of these tests. As such, it is prudent to evaluate the sensitivity and reliability of parametric, historical trade forecasting models in comparison to the relatively modern, nonparametric models. In doing so, we introduce the SSA technique for trade forecasting and perform exhaustive statistical tests on the data for normality, stationarity and change points, and the forecasting results for statistical significance prior to reaching the well-founded conclusion that SSA is less sensitive to the impact of recessions on U.S. trade, in comparison to an optimised ARIMA model, Exponential Smoothing and Neural Network models. Ergo, we conclude that SSA is able to provide more accurate forecasts for U.S. trade in the face of recessions, and is therefore presented as an apt alternative for U.S. trade forecasting before, during and after a future recession.

Suggested Citation

  • Emmanuel Sirimal Silva & Hossein Hassani, 2015. "On the use of singular spectrum analysis for forecasting U.S. trade before, during and after the 2008 recession," International Economics, CEPII research center, issue 141, pages 34-49.
  • Handle: RePEc:cii:cepiie:2015-q1-141-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2110701715000050
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    2. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    3. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    4. Hakan Yilmazkuday, 2016. "Forecasting the Great Trade Collapse," International Economics, CEPII research center, issue 147, pages 145-154.
    5. Yoga Sasmita & Heri Kuswanto & Dedy Dwi Prastyo, 2024. "State-Dependent Model Based on Singular Spectrum Analysis Vector for Modeling Structural Breaks: Forecasting Indonesian Export," Forecasting, MDPI, vol. 6(1), pages 1-18, February.
    6. Stavros Degiannakis & George Filis, 2019. "Forecasting European economic policy uncertainty," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 94-114, February.
    7. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.
    8. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    9. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    10. Chen, Rui & Hartarska, Valentina & Wilson, Norbert L.W., 2018. "The causal impact of HACCP on seafood imports in the U.S.: An application of difference-in-differences within the gravity model," Food Policy, Elsevier, vol. 79(C), pages 166-178.
    11. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    12. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    13. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    14. Hossein Hassani & Jan Coreman & Saeed Heravi & Joshy Easaw, 2018. "Forecasting Inflation Rate: Professional Against Academic, Which One is More Accurate," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 631-646, September.
    15. Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
    16. Hossein Hassani & Mahdi Kalantari & Zara Ghodsi, 2019. "Evaluating the Performance of Multiple Imputation Methods for Handling Missing Values in Time Series Data: A Study Focused on East Africa, Soil-Carbonate-Stable Isotope Data," Stats, MDPI, vol. 2(4), pages 1-11, December.

    More about this item

    Keywords

    United States; International trade; Recession; Forecasting; Singular spectrum analysis;
    All these keywords.

    JEL classification:

    • F1 - International Economics - - Trade
    • F10 - International Economics - - Trade - - - General
    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cii:cepiie:2015-q1-141-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cepiifr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.