IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v67y2021i1id61-2020-rae.html
   My bibliography  Save this article

Effect of drying temperature in hop dryer on hop quality

Author

Listed:
  • Adolf Rybka
  • Petr Heřmánek

    (Department of Agricultural Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Ivo Honzík

    (Department of Agricultural Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic)

Abstract

One of the qualitative characteristics of both green and dried hops is the content of hop essential oils which are contained in a quantity of 0.5 to 3.5%, depending on the hop variety. These essential oils are heat labile substances because the temperature has an influence on their content. Hop cones, dried either in belt or chamber dryers, are exposed to a drying medium temperature of 55 °C to 60 °C for the entire duration of drying, i.e. for 6-8 hours. Under current drying conditions there is a loss of approx. 15 to 25% of the total content of essential oils present in hops before drying. In case of special aroma hop varieties, such losses lead to a decline in the product quality. Comparative measurements have been carried out with a laboratory equipment to find out whether more aromatic essential oils are retained in hop cones at a drying temperature of 40 °C compared to a drying temperature of 60 °C. The measurement carried out with the most common variety of Saaz hop concluded that the essential oil losses were lower by 33.4% at a drying temperature of 40 °C, and with other seven mostly hybrid varieties the losses were lower on average by 13.9% than at a drying temperature of 60 °C. The measurements proved that each of the varieties retained, to a significant extent, its content of essential oils in the dried hop cones at a drying temperature of 40 °C.

Suggested Citation

  • Adolf Rybka & Petr Heřmánek & Ivo Honzík, 2021. "Effect of drying temperature in hop dryer on hop quality," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
  • Handle: RePEc:caa:jnlrae:v:67:y:2021:i:1:id:61-2020-rae
    DOI: 10.17221/61/2020-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/61/2020-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/61/2020-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/61/2020-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Vitázek & J. Havelka, 2014. "Sorption isotherms of agricultural products," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 60(SpecialIs), pages 52-56.
    2. Sharma, G.P. & Prasad, Suresh, 2006. "Specific energy consumption in microwave drying of garlic cloves," Energy, Elsevier, vol. 31(12), pages 1921-1926.
    3. Beigi, Mohsen & Torki-Harchegani, Mehdi & Tohidi, Mojtaba, 2017. "Experimental and ANN modeling investigations of energy traits for rough rice drying," Energy, Elsevier, vol. 141(C), pages 2196-2205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Beigi & Hossein Beigi Harchegani & Mehdi Torki & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Jacek Dziwulski, 2022. "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    2. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    3. Prabhakaran, SP Sathiya & Swaminathan, Ganapathiraman & Joshi, Viraj V., 2022. "Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks," Energy, Elsevier, vol. 242(C).
    4. Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
    5. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    6. Acevedo, Luis & Usón, Sergio & Uche, Javier, 2014. "Exergy transfer analysis of microwave heating systems," Energy, Elsevier, vol. 68(C), pages 349-363.
    7. Anubhav Pratap Singh & Ronit Mandal & Maryam Shojaei & Anika Singh & Przemysław Łukasz Kowalczewski & Marta Ligaj & Jarosław Pawlicz & Maciej Jarzębski, 2020. "Novel Drying Methods for Sustainable Upcycling of Brewers’ Spent Grains as a Plant Protein Source," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    8. Adolf RYBKA & Karel KROFTA & Petr HEŘMÁNEK & Ivo HONZÍK & Jaroslav POKORNÝ, 2018. "Effect of drying temperature on the content and composition of hop oils," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(10), pages 512-516.
    9. Panda, Brajesh Kumar & Mishra, Gayatri & Panigrahi, Shubham Subrot & Shrivastava, Shanker Lal, 2021. "Microwave-assisted parboiling of high moisture paddy: A comparative study based on energy utilization, process economy and grain quality with conventional parboiling," Energy, Elsevier, vol. 232(C).
    10. Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
    11. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
    12. Damir Đaković & Miroslav Kljajić & Nikola Milivojević & Đorđije Doder & Aleksandar S. Anđelković, 2023. "Review of Energy-Related Machine Learning Applications in Drying Processes," Energies, MDPI, vol. 17(1), pages 1-38, December.
    13. Balbay, Asim & Kaya, Yilmaz & Sahin, Omer, 2012. "Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine," Energy, Elsevier, vol. 44(1), pages 352-357.
    14. Zhang, Lihong & Wang, Jun & Wang, Bin, 2020. "Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility," Energy, Elsevier, vol. 211(C).
    15. Ahmet Beyzade Demirpolat, 2019. "Investigation of Mass Transfer with Different Models in a Solar Energy Food-Drying System," Energies, MDPI, vol. 12(18), pages 1-14, September.
    16. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    17. Zhang, Weijiang & Yao, Ye & He, Beixing & Wang, Rongshun, 2011. "The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound," Applied Energy, Elsevier, vol. 88(6), pages 2146-2156, June.
    18. Hany S. EL-Mesery & Abd El-Fatah Abomohra & Chan-Ung Kang & Ji-Kwang Cheon & Bikram Basak & Byong-Hun Jeon, 2019. "Evaluation of Infrared Radiation Combined with Hot Air Convection for Energy-Efficient Drying of Biomass," Energies, MDPI, vol. 12(14), pages 1-15, July.
    19. Singh, Shobhana & Kumar, Subodh, 2013. "Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation," Energy, Elsevier, vol. 51(C), pages 27-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:67:y:2021:i:1:id:61-2020-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.