IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpps/v45y2009ispecialissueid2829-pps.html
   My bibliography  Save this article

Climate change and its possible influence on the occurrence and importance of insect pests

Author

Listed:
  • Zdeněk Laštůvka

    (Department of Zoology, Fisheries, Hydrobiology and Apiculture Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno, Brno, Czech Republic)

Abstract

Insect pests, as widely tolerant and adaptable organisms, may be less distinctly affected by climate change than other insect species. The changing climate may affect the occurrence and impact of the native pests both negatively and positively (increased importance of thermophilous and xerophilous species and decreased importance of psychrophilous ones, noxious abundances of several species also in higher altitudes, decrease of many pests by frost-free winters, low humidity, weather extremes, increased numbers of antagonists, and phenological discrepancy with the host plant). Expansions of new pests into the territory of the Czech Republic, caused by climate change, will be very limited. A small number of greenhouse pests may be expected to occur in outdoor conditions. Increased temperatures may cause a slight increase of non-indigenous invasive insect species and migratory pests. In Central Europe the climate change will intensify the effects of other factors. In the next 20-50 years, the changes in species composition and importance of insect pests of plants will be caused by factors in the following order: (l) introductions of non-indigenous species, (2) new approaches in pest control, (3-4) changes in crop cultivation and representation of crops, (3-4) climate change, (5) other causes (unexpected shifts of ranges, changes in food preferences of insect species, etc.).

Suggested Citation

  • Zdeněk Laštůvka, 2009. "Climate change and its possible influence on the occurrence and importance of insect pests," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 53-62.
  • Handle: RePEc:caa:jnlpps:v:45:y:2009:i:specialissue:id:2829-pps
    DOI: 10.17221/2829-PPS
    as

    Download full text from publisher

    File URL: http://pps.agriculturejournals.cz/doi/10.17221/2829-PPS.html
    Download Restriction: free of charge

    File URL: http://pps.agriculturejournals.cz/doi/10.17221/2829-PPS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/2829-PPS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eva KOCMÁNKOVÁ & Miroslav TRNKA & Zdeněk ŽALUD & Daniela SEMERÁDOVÁ & Martin DUBROVSKÝ & František MUŠKA & Martin MOŽNÝ, 2008. "Comparison of two mapping methods of potential distribution of pests under present and changed climate," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 44(2), pages 49-56.
    2. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    3. Jitka Stará & František Kocourek, 2004. "Flight pattern of Archips podana (Lep.: Tortricidae) based on data from pheromone traps," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 40(3), pages 75-81.
    4. Andrew J. Davis & Linda S. Jenkinson & John H. Lawton & Bryan Shorrocks & Simon Wood, 1998. "Making mistakes when predicting shifts in species range in response to global warming," Nature, Nature, vol. 391(6669), pages 783-786, February.
    5. Pavel Lauterer, 2002. "Citrus flatid planthopper - Metcalfa pruinosa (Hemiptera: Flatidae), a new pest of ornamental horticulture in the Czech Republic," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 38(4), pages 145-148.
    6. Jitka Stará & František Kocourek, 2001. "Flight patterns of Hedya dimidioalba, Spilonota ocellana and Pandemis heparana (Lep.: Tortricidae) based on data from pheromone traps," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 37(4), pages 129-137.
    7. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McRae, Brad H. & Schumaker, Nathan H. & McKane, Robert B. & Busing, Richard T. & Solomon, Allen M. & Burdick, Connie A., 2008. "A multi-model framework for simulating wildlife population response to land-use and climate change," Ecological Modelling, Elsevier, vol. 219(1), pages 77-91.
    2. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    6. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    7. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    8. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    9. Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
    10. Rowell, Jonathan T., 2009. "The limitation of species range: A consequence of searching along resource gradients," Theoretical Population Biology, Elsevier, vol. 75(2), pages 216-227.
    11. Choden, Kunzang & Nitschke, Craig R. & Stewart, Stephen B. & Keenan, Rodney J., 2021. "The potential impacts of climate change on the distribution of key tree species and Cordyceps in Bhutan: Implications for ecological functions and rural livelihoods," Ecological Modelling, Elsevier, vol. 455(C).
    12. Lee Hannah & Marc Steele & Emily Fung & Pablo Imbach & Lorriane Flint & Alan Flint, 2017. "Climate change influences on pollinator, forest, and farm interactions across a climate gradient," Climatic Change, Springer, vol. 141(1), pages 63-75, March.
    13. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    14. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    15. Ferenc L. Toth & Eva Hizsnyik, 2005. "Managing The Inconceivable: Participatory Assessments Of Impacts And Responses To Extreme Climate Change," Working Papers FNU-74, Research unit Sustainability and Global Change, Hamburg University, revised May 2005.
    16. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    17. Elizabeth C Elliott & Stephen J Cornell, 2013. "Are Anomalous Invasion Speeds Robust to Demographic Stochasticity?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    18. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    19. Sang-Don Lee, 2017. "Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea," Sustainability, MDPI, vol. 9(12), pages 1-27, November.
    20. Jianguo Wu, 2016. "Detection and attribution of the effects of climate change on bat distributions over the last 50 years," Climatic Change, Springer, vol. 134(4), pages 681-696, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpps:v:45:y:2009:i:specialissue:id:2829-pps. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.