IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v61y2015i11id47-2015-jfs.html
   My bibliography  Save this article

Climate change impacts on the Alpine ecosystem: an overview with focus on the soil

Author

Listed:
  • S. Chersich

    (University of Pavia, Department of Earth and Environmental Sciences, Pavia, Italy)

  • K. Rejšek

    (Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Brno, Czech Republic)

  • V. Vranová

    (Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Brno, Czech Republic)

  • M. Bordoni

    (University of Pavia, Department of Earth and Environmental Sciences, Pavia, Italy)

  • C. Meisina

    (University of Pavia, Department of Earth and Environmental Sciences, Pavia, Italy)

Abstract

The Alpine ecosystem is very sensitive to climatic changes, which have an influence on glaciers, snow, vegetation and soils. The aim of this review is to illustrate the effects of global change on the Alpine soil ecosystem, which is an optimal marker to record them. The manuscript enhances our understanding of the global change effect on the Alpine environment: on morphology, on ice, on vegetation and points out how the cycles of soil nutrients equilibrium have been changed with a direct effect on soils that support plant species. The changes in cryosphere, glacier reduction and periglacial environment as glaciers retreat, decrease in the snow cover extent and earlier snowmelt, determine an effect on soils (on the structure, organic matter and humus forms, soil processes and soil types) from the top of the Alpine horizon to the bottom. The processes induced by climate change (such as erosion and tree line shifting) have a direct effect on water balance that can be observed on soil profile characters with an effect on upward migration, change in phenology, extensive losses of species. The equilibrium of the biogeochemical cycles has been changed and this has a direct effect on soils that support plant species.

Suggested Citation

  • S. Chersich & K. Rejšek & V. Vranová & M. Bordoni & C. Meisina, 2015. "Climate change impacts on the Alpine ecosystem: an overview with focus on the soil," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(11), pages 496-514.
  • Handle: RePEc:caa:jnljfs:v:61:y:2015:i:11:id:47-2015-jfs
    DOI: 10.17221/47/2015-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/47/2015-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/47/2015-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/47/2015-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kálmán Rajkai, 2008. "The role of soil in bioclimatology - a review," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 3(SpecialIs), pages 30-41.
    2. D. Sugiero & R. Jaszczak & G. Rączka & P. Strzeliński & A. Węgiel & A. Wierzbicka, 2009. "Species composition in low mountain beech (Fagus sylvatica L.) stands in the Bieszczady National Park under the global warming," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 55(5), pages 244-250.
    3. Annett Wolf & Patrick Lazzarotto & Harald Bugmann, 2012. "The relative importance of land use and climatic change in Alpine catchments," Climatic Change, Springer, vol. 111(2), pages 279-300, March.
    4. Nicoletta Cannone & Sandro Pignatti, 2014. "Ecological responses of plant species and communities to climate warming: upward shift or range filling processes?," Climatic Change, Springer, vol. 123(2), pages 201-214, March.
    5. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    6. Michael C. R. Davies & Omar Hamza & Charles Harris, 2001. "The effect of rise in mean annual temperature on the stability of rock slopes containing ice‐filled discontinuities," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 12(1), pages 137-144, March.
    7. Sébastien Fontaine & Sébastien Barot & Pierre Barré & Nadia Bdioui & Bruno Mary & Cornelia Rumpel, 2007. "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, Nature, vol. 450(7167), pages 277-280, November.
    8. G. Qi & Q. Wang & W. Zhou & H. Ding & X. Wang & L. Qi & Y. Wang & S. Li & L. Dai, 2011. "Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(8), pages 340-348.
    9. Martin Beniston, 2012. "Is snow in the Alps receding or disappearing?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 3(4), pages 349-358, July.
    10. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    3. Xue Liu & Yifan Zhang & Haitao Wu & Dandan Liu & Zhongsheng Zhang, 2024. "Vertical Variation in Temperature Sensitivity of Soil Organic Carbon Mineralization in Changbai Mountain, China: A Microcosm Study," Sustainability, MDPI, vol. 16(3), pages 1-15, February.
    4. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Braakhekke, Maarten C. & Beer, Christian & Hoosbeek, Marcel R. & Reichstein, Markus & Kruijt, Bart & Schrumpf, Marion & Kabat, Pavel, 2011. "SOMPROF: A vertically explicit soil organic matter model," Ecological Modelling, Elsevier, vol. 222(10), pages 1712-1730.
    6. Chloe F Sato & Jeff T Wood & David B Lindenmayer, 2013. "The Effects of Winter Recreation on Alpine and Subalpine Fauna: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    7. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    8. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    9. Igor Linkov & Benjamin Trump & Greg Kiker, 2022. "Diversity and inclusiveness are necessary components of resilient international teams," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    10. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    11. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    13. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    14. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    15. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    16. Laura M. Canevari‐Luzardo & Frans Berkhout & Mark Pelling, 2020. "A relational view of climate adaptation in the private sector: How do value chain interactions shape business perceptions of climate risk and adaptive behaviours?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 432-444, February.
    17. Niccolò Casnici & Pierpaolo Dondio & Roberto Casarin & Flaminio Squazzoni, 2015. "Decrypting Financial Markets through E-Joint Attention Efforts: On-Line Adaptive Networks of Investors in Periods of Market Uncertainty," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    18. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.
    19. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    20. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:61:y:2015:i:11:id:47-2015-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.