IDEAS home Printed from https://ideas.repec.org/a/caa/jnlhor/v47y2020i3id139-2019-hortsci.html
   My bibliography  Save this article

Commercial and nutraceutical quality of grafted melon cultivated under hydric stress

Author

Listed:
  • Marco Antonio Villegas Olguín

    (Department of Horticulture, University Autonomus Agrarian Antonio Narro, Saltillo, Coahuila, México)

  • Marcelino Cabrera De la Fuente

    (Department of Horticulture, University Autonomus Agrarian Antonio Narro, Saltillo, Coahuila, México)

  • Adalberto Benavides Mendoza

    (Department of Horticulture, University Autonomus Agrarian Antonio Narro, Saltillo, Coahuila, México)

  • Antonio Juárez Maldonado

    (Department of Horticulture, University Autonomus Agrarian Antonio Narro, Saltillo, Coahuila, México)

  • Alberto Sandoval Rangel

    (Department of Horticulture, University Autonomus Agrarian Antonio Narro, Saltillo, Coahuila, México)

  • Eloy Fernandez Cusimamani

    (Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic)

Abstract

Water stress decreases the quality of fruit by generating reactive oxygen species. Grafting is a technique that can improve the efficiency of crop water usage. This work was performed in order to assess the effect of different water stresses on the commercial and nutraceutical quality of a melon fruit. Cantaloupe melon plants, grown under shade houses were grafted onto a creole pumpkin rootstock and grown with different water stresses (20, 30, and 40 kPa). The grafted melon plants under 30-kPa water stress (G30) showed greater fruit firmness and increased catalase activity. The G30 fruits showed an increase in GPX activity of up to 80% over the non-grafted plants. The GSH was higher in fruits subjected to the 40-kPa water tension. The superoxide dismutase showed a 15% greater inhibition in the fruits from the non-grafted plants. At higher water tensions, the DPPH antioxidant activity decreased, while the vitamin C content increased.

Suggested Citation

  • Marco Antonio Villegas Olguín & Marcelino Cabrera De la Fuente & Adalberto Benavides Mendoza & Antonio Juárez Maldonado & Alberto Sandoval Rangel & Eloy Fernandez Cusimamani, 2020. "Commercial and nutraceutical quality of grafted melon cultivated under hydric stress," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 47(3), pages 139-149.
  • Handle: RePEc:caa:jnlhor:v:47:y:2020:i:3:id:139-2019-hortsci
    DOI: 10.17221/139/2019-HORTSCI
    as

    Download full text from publisher

    File URL: http://hortsci.agriculturejournals.cz/doi/10.17221/139/2019-HORTSCI.html
    Download Restriction: free of charge

    File URL: http://hortsci.agriculturejournals.cz/doi/10.17221/139/2019-HORTSCI.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/139/2019-HORTSCI?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    2. Sensoy, Suat & Ertek, Ahmet & Gedik, Ibrahim & Kucukyumuk, Cenk, 2007. "Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 269-274, March.
    3. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Zelin & Bai, Jiaming & Li, Rui & He, Daiwei & Du, Rongcheng & Li, Dayong & Hong, Tingting & Zhang, Zhi, 2023. "Water and nitrogen management scheme of melon based on yield−quality−efficiency matching perspective under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 285(C).
    2. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    4. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Çoklar, Hacer & Ercan, Muhammet, 2021. "Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon," Agricultural Water Management, Elsevier, vol. 246(C).
    5. Zhang, Zhe & Liu, Shengyao & Jia, Songnan & Du, Fenghuan & Qi, Hao & Li, Jiaxi & Song, Xinyue & Zhao, Nan & Nie, Lanchun & Fan, Fengcui, 2021. "Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Bao-Li Miao & Ying Liu & Yu-Bing Fan & Xue-Jiao Niu & Xiu-Yun Jiang & Zeng Tang, 2023. "Optimization of Agricultural Resource Allocation among Crops: A Portfolio Model Analysis," Land, MDPI, vol. 12(10), pages 1-18, October.
    7. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    8. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    10. Faisal I. Zeineldin & Yousef Al-Molhim, 2021. "Polymer and deficit irrigation influence on water use efficiency and yield of muskmelon under surface and subsurface drip irrigation," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(3), pages 191-203.
    11. Xue, Qimin & Li, Hao & Chen, Jinliang & Du, Taisheng, 2024. "Fruit cracking in muskmelon: Fruit growth and biomechanical properties in different irrigation levels," Agricultural Water Management, Elsevier, vol. 293(C).
    12. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    13. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    14. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    16. Peng-Ming Yang & Song-Tao He, 2022. "The effects of arbuscular mycorrhizal fungi and deficit irrigation on the yield and sugar content of watermelons (Citrullus lanatus)," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 49(4), pages 225-233.
    17. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    18. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    19. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    20. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlhor:v:47:y:2020:i:3:id:139-2019-hortsci. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.