IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v11y2005i1p1-14n2.html
   My bibliography  Save this article

An ε-Optimal Portfolio with Stochastic Volatility

Author

Listed:
  • Gabih Abdelali
  • Grecksch Wilfried

Abstract

We consider an extended Merton's problem of optimal consumption and investment in continuous-time with stochastic volatility. The wealth process of the investor is approximated by a particular weak Itô-Taylor approximation called Euler scheme. It is shown that the optimal control of the value function generated by the Euler scheme is an ε-optimal control of the original problem of maximizing total expected discounted HARA utility from consumption.

Suggested Citation

  • Gabih Abdelali & Grecksch Wilfried, 2005. "An ε-Optimal Portfolio with Stochastic Volatility," Monte Carlo Methods and Applications, De Gruyter, vol. 11(1), pages 1-14, March.
  • Handle: RePEc:bpj:mcmeap:v:11:y:2005:i:1:p:1-14:n:2
    DOI: 10.1515/1569396054027256
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1569396054027256
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1569396054027256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    2. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    2. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    3. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    4. Holger Kraft & Mogens Steffensen, 2006. "Portfolio problems stopping at first hitting time with application to default risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 123-150, February.
    5. Joshua Aurand & Yu‐Jui Huang, 2023. "Epstein‐Zin utility maximization on a random horizon," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1370-1411, October.
    6. Simon Ellersgaard & Martin Tegnér, 2018. "Stochastic volatility for utility maximizers — A martingale approach," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-39, March.
    7. Rohini Kumar & Hussein Nasralah, 2016. "Asymptotic approximation of optimal portfolio for small time horizons," Papers 1611.09300, arXiv.org, revised Feb 2018.
    8. Levon Avanesyan & Mykhaylo Shkolnikov & Ronnie Sircar, 2020. "Construction of a class of forward performance processes in stochastic factor models, and an extension of Widder’s theorem," Finance and Stochastics, Springer, vol. 24(4), pages 981-1011, October.
    9. Marius Ascheberg & Nicole Branger & Holger Kraft & Frank Thomas Seifried, 2016. "When do jumps matter for portfolio optimization?," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1297-1311, August.
    10. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    11. Bernard, C. & De Gennaro Aquino, L. & Vanduffel, S., 2023. "Optimal multivariate financial decision making," European Journal of Operational Research, Elsevier, vol. 307(1), pages 468-483.
    12. Matthew Lorig & Ronnie Sircar, 2015. "Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio," Papers 1506.06180, arXiv.org.
    13. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    14. Mohamed Badaoui & Begoña Fernández & Anatoliy Swishchuk, 2018. "An Optimal Investment Strategy for Insurers in Incomplete Markets," Risks, MDPI, vol. 6(2), pages 1-23, April.
    15. Yuanrong Wang & Tomaso Aste, 2021. "Dynamic Portfolio Optimization with Inverse Covariance Clustering," Papers 2112.15499, arXiv.org, revised Jan 2022.
    16. Sergei Egorov & Serguei Pergamenchtchikov, 2024. "Optimal investment and consumption for financial markets with jumps under transaction costs," Finance and Stochastics, Springer, vol. 28(1), pages 123-159, January.
    17. Kopeliovich, Yaacov & Pokojovy, Michael, 2024. "Portfolio optimization with feedback strategies based on artificial neural networks," Finance Research Letters, Elsevier, vol. 69(PB).
    18. Henderson, Vicky & Hobson, David G., 2002. "Real options with constant relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 27(2), pages 329-355, December.
    19. Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.
    20. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:11:y:2005:i:1:p:1-14:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.