# Are the "Four Factors" Indicators of One Factor? An Application of Structural Equation Modeling Methodology to NBA Data in Prediction of Winning Percentage

Listed:
• Baghal Tarek

## Abstract

Significant work has gone into the development of team and individual statistics in the NBA; for example, the team measures of the “Four Factors.” Less work has been conducted using multivariate analyses of these metrics, including identifying possible new statistical techniques to analyze these data. In particular, this research examines the feasibility of using structural equation modeling (SEM) for multivariate analyses of NBA Four Factors data. SEM consists of both confirmatory factor analysis (CFA) and path modeling. Before SEM is employed, this research first examines the effects of offensive and defensive Four Factors in a linear regression model, expanding previous research and providing a baseline for the SEM. In doing so, the data show the importance of effective field goal percentage. Next, structural equation modeling is employed. The CFA finds that offensive Four Factors are indicators of a single latent factor, labeled “offensive quality.” The “defensive quality” latent factor is estimable when replacing opposing teams’ free throw rate with steals per possession. The SEM is extended to regress winning percentage on latent offensive and defensive quality as well as salary. Salary is an important and often overlooked part of multivariate models examining team statistics, but it is easily incorporated in SEM. The explained variance for the regression in the SEM is similar to that of the linear regression model and indicates the importance of both offensive and defensive quality, with offensive quality having a larger effect. Team salaries are related to offensive quality, but not defensive quality or winning. As such, a second structural equation model is proposed where the effect of salary on winning is mediated by its relationship with offensive and defensive quality. Since salary is related to offensive quality but not defensive quality, and offensive quality is more important to winning percentage, this suggests that money spent is done so for offensive performance and affects winning through the performance paid for. These results suggest potential team strategies, as well as the applicability of SEM to sports analytics, not only to NBA data, but to other sports data as well.

## Suggested Citation

• Baghal Tarek, 2012. "Are the "Four Factors" Indicators of One Factor? An Application of Structural Equation Modeling Methodology to NBA Data in Prediction of Winning Percentage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-17, March.
• Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:1:n:5
as

File URL: https://www.degruyter.com/view/j/jqas.2012.8.issue-1/1559-0410.1355/1559-0410.1355.xml?format=INT

As the access to this document is restricted, you may want to search for a different version of it.

## References listed on IDEAS

as
1. Hirotsu Nobuyoshi & Ito Masamitsu & Miyaji Chikara & Hamano Koji & Taguchi Azuma, 2009. "Modeling Tactical Changes of Formation in Association Football as a Non-Zero-Sum Game," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-15, July.
Full references (including those not matched with items on IDEAS)

## Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as

Cited by:

1. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.

## Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:1:n:5. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.