IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v5y2009i1n7.html
   My bibliography  Save this article

Predicting NBA Games Using Neural Networks

Author

Listed:
  • Loeffelholz Bernard

    (Air Force Institute of Technology)

  • Bednar Earl

    (Air Force Institute of Technology)

  • Bauer Kenneth W

    (Air Force Institute of Technology)

Abstract

In this paper we examine the use of neural networks as a tool for predicting the success of basketball teams in the National Basketball Association (NBA). Statistics for 620 NBA games were collected and used to train a variety of neural networks such as feed-forward, radial basis, probabilistic and generalized regression neural networks. Fusion of the neural networks is also examined using Bayes belief networks and probabilistic neural network fusion. Further, we investigate which subset of features input to the neural nets are the most salient features for prediction. We explored subsets obtained from signal-to-noise ratios and expert opinions to identify a subset of features input to the neural nets. Results obtained from these networks were compared to predictions made by numerous experts in the field of basketball. The best networks were able to correctly predict the winning team 74.33 percent of the time (on average) as compared to the experts who were correct 68.67 percent of the time.

Suggested Citation

  • Loeffelholz Bernard & Bednar Earl & Bauer Kenneth W, 2009. "Predicting NBA Games Using Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(1), pages 1-17, January.
  • Handle: RePEc:bpj:jqsprt:v:5:y:2009:i:1:n:7
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jqas.2009.5.1/jqas.2009.5.1.1156/jqas.2009.5.1.1156.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David John A. & Pasteur R. Drew & Ahmad M. Saif & Janning Michael C., 2011. "NFL Prediction using Committees of Artificial Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-15, May.
    2. Wei Gu & Thomas L. Saaty & Rozann Whitaker, 2016. "Expert System for Ice Hockey Game Prediction: Data Mining with Human Judgment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 763-789, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:5:y:2009:i:1:n:7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.