IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i2n10.html
   My bibliography  Save this article

Optimal Dynamic Regimes: Presenting a Case for Predictive Inference

Author

Listed:
  • Arjas Elja

    (University of Helsinki and National Institute for Health and Welfare)

  • Saarela Olli

    (National Institute for Health and Welfare)

Abstract

Dynamic treatment regime is a decision rule in which the choice of the treatment of an individual at any given time can depend on the known past history of that individual, including baseline covariates, earlier treatments, and their measured responses. In this paper we argue that finding an optimal regime can, at least in moderately simple cases, be accomplished by a straightforward application of nonparametric Bayesian modeling and predictive inference. As an illustration we consider an inference problem in a subset of the Multicenter AIDS Cohort Study (MACS) data set, studying the effect of AZT initiation on future CD4-cell counts during a 12-month follow-up.

Suggested Citation

  • Arjas Elja & Saarela Olli, 2010. "Optimal Dynamic Regimes: Presenting a Case for Predictive Inference," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-21, March.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:2:n:10
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/ijb.2010.6.2/ijb.2010.6.2.1204/ijb.2010.6.2.1204.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355.
    3. Elja Arjas & Jan Parner, 2004. "Causal Reasoning from Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 171-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Doretti & Sara Geneletti & Elena Stanghellini, 2016. "Tackling non-ignorable dropout in the presence of time varying confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 775-795, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:2:n:10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.