IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v40y2024i4ne1764.html
   My bibliography  Save this article

Descriptive design structure matrices for improved system dynamics qualitative modeling

Author

Listed:
  • Rameez R. Qureshi
  • David N. Ford
  • Charles M. Wolf

Abstract

Qualitative modeling approaches can be useful in system information collection, model analysis, and formal model development. This is difficult when the number of elements and their interactions in the system is large. System dynamicists need additional tools and methods to conceptually model these large tightly coupled systems. We propose and test the Descriptive Design Structure Matrix (DDSM) as a qualitative system dynamics modeling tool and approach for systems with many elements and more interactions that can reasonably be modeled individually using traditional system dynamics methods. A DDSM consists of four parallel and internally consistent matrices that describe system interactions with binary relations, nontechnical text, technical text, and literature support. By including and documenting system information in multiple forms, DDSMs facilitate multiple stages of system dynamics modeling, improve modeler communication with system participants and domain experts, and improve model rigor. DDSM construction is described. A case study of the 2014 flooding in Kashmir is used to illustrate and test a DDSM and its application. Due to their compact format, DDSMs provide a useful visual communication aid, intuitive reasoning tool, and foundation for formal system dynamics modeling and analysis. © 2024 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Suggested Citation

  • Rameez R. Qureshi & David N. Ford & Charles M. Wolf, 2024. "Descriptive design structure matrices for improved system dynamics qualitative modeling," System Dynamics Review, System Dynamics Society, vol. 40(4), October.
  • Handle: RePEc:bla:sysdyn:v:40:y:2024:i:4:n:e1764
    DOI: 10.1002/sdr.1764
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1764
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Taher Azar, 2012. "System dynamics as a useful technique for complex systems," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(4), pages 377-410.
    2. Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, December.
    3. G P Richardson, 1999. "Reflections for the future of system dynamics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(4), pages 440-449, April.
    4. Kopainsky, Birgit & Hager, Gerid & Herrera, Hugo & Nyanga, Progress H., 2017. "Transforming food systems at local levels: Using participatory system dynamics in an interactive manner to refine small-scale farmers’ mental models," Ecological Modelling, Elsevier, vol. 362(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krystyna Stave & Nici Zimmermann & Hyunjung Kim, 2024. "Qualitative Aspects of System Dynamics Modeling," System Dynamics Review, System Dynamics Society, vol. 40(4), October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin D. Connolly & Graeme J. Doole, 2024. "An analysis of participants' introductory experience with causal loop diagrams (CLDs) using group model building (GMB) scripts," System Dynamics Review, System Dynamics Society, vol. 40(4), October.
    2. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    3. Uwe Beyer & Oliver Ullrich, 2022. "Organizational Complexity as a Contributing Factor to Underperformance," Businesses, MDPI, vol. 2(1), pages 1-15, March.
    4. Andrada Tomoaia‐Cotisel & Samuel D. Allen & Hyunjung Kim & David Andersen & Zaid Chalabi, 2022. "Rigorously interpreted quotation analysis for evaluating causal loop diagrams in late‐stage conceptualization," System Dynamics Review, System Dynamics Society, vol. 38(1), pages 41-80, January.
    5. Morgan Dwyer & Bruce Cameron & Zoe Szajnfarber, 2015. "A Framework for Studying Cost Growth on Complex Acquisition Programs," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 568-583, November.
    6. Robert Schmidt & Kasper Sanchez Vibaek & Simon Austin, 2014. "Evaluating the adaptability of an industrialized building using dependency structure matrices," Construction Management and Economics, Taylor & Francis Journals, vol. 32(1-2), pages 160-182, February.
    7. Kaushik Sinha & Seok‐Youn Han & Eun Suk Suh, 2020. "Design structure matrix‐based modularization approach for complex systems with multiple design constraints," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 211-220, March.
    8. Juntao Zhang & Cecilia Haskins & Yiliu Liu & Mary Ann Lundteigen, 2018. "A systems engineering–based approach for framing reliability, availability, and maintainability: A case study for subsea design," Systems Engineering, John Wiley & Sons, vol. 21(6), pages 576-592, November.
    9. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    10. Khraisha, Tamer, 2020. "Complex economic problems and fitness landscapes: Assessment and methodological perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 390-407.
    11. Andreas Poller, 2020. "Exploring and managing the complexity of large infrastructure projects with network theory and model‐based systems engineering—The example of radioactive waste disposal," Systems Engineering, John Wiley & Sons, vol. 23(4), pages 443-459, July.
    12. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    13. Christopher M. Schlick & Soenke Duckwitz & Sebastian Schneider, 2013. "Project dynamics and emergent complexity," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 480-515, December.
    14. Young‐Don Shin & Sang‐Hyun Sim & Jae‐Chon Lee, 2017. "Model‐Based Integration of Test and Evaluation Process and System Safety Process for Development of Safety‐Critical Weapon Systems," Systems Engineering, John Wiley & Sons, vol. 20(3), pages 257-279, May.
    15. Lopes, Rita & Videira, Nuno, 2017. "Modelling feedback processes underpinning management of ecosystem services: The role of participatory systems mapping," Ecosystem Services, Elsevier, vol. 28(PA), pages 28-42.
    16. Alison L. Olechowski & Steven D. Eppinger & Nitin Joglekar & Katharina Tomaschek, 2020. "Technology readiness levels: Shortcomings and improvement opportunities," Systems Engineering, John Wiley & Sons, vol. 23(4), pages 395-408, July.
    17. Nicolay Worren & Tore Christiansen & Kim Verner Soldal, 2020. "Using an algorithmic approach for grouping roles and sub-units," Journal of Organization Design, Springer;Organizational Design Community, vol. 9(1), pages 1-19, December.
    18. Nici Zimmermann & Katherine Curran, 2023. "Dynamics of interdisciplinarity: a microlevel analysis of communication and facilitation in a group model‐building workshop," System Dynamics Review, System Dynamics Society, vol. 39(4), pages 336-370, October.
    19. David Engel & Thomas W Malone, 2018. "Integrated information as a metric for group interaction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    20. Edwin C. Y. Koh, 2017. "A study on the Requirements to Support the Accurate Prediction of Engineering Change Propagation," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 147-157, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:40:y:2024:i:4:n:e1764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.