IDEAS home Printed from https://ideas.repec.org/a/bla/reviec/v19y2011i1p189-206.html
   My bibliography  Save this article

EU Banks Rating Assignments: Is There Heterogeneity between New and Old Member Countries?

Author

Listed:
  • Guglielmo Maria Caporale
  • Roman Matousek
  • Chris Stewart

Abstract

We model EU countries' bank ratings using financial variables and allowing for intercept and slope heterogeneity. Our aim is to assess whether "old" and "new" EU countries are rated differently and to determine whether "new" ones are assigned lower ratings, ceteris paribus, than "old" ones. We find that country-specific factors (in the form of heterogeneous intercepts) are a crucial determinant of ratings. Whilst "new" EU countries typically have lower ratings than "old" ones, after controlling for financial variables we also discover that all countries have significantly different intercepts, confirming our prior belief. This intercept heterogeneity suggests that each country's rating is assigned uniquely, after controlling for differences in financial factors, which may reflect differences in country risk and the legal and regulatory framework that banks face (such as foreclosure laws). In addition, we find that ratings may respond differently to the liquidity and operating expenses to operating income variables across countries. Typically ratings are more responsive to the former and less sensitive to the latter for "new" EU countries compared with "old" EU countries.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Guglielmo Maria Caporale & Roman Matousek & Chris Stewart, 2011. "EU Banks Rating Assignments: Is There Heterogeneity between New and Old Member Countries?," Review of International Economics, Wiley Blackwell, vol. 19(1), pages 189-206, February.
  • Handle: RePEc:bla:reviec:v:19:y:2011:i:1:p:189-206
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Feng, D. & Gourieroux, C. & Jasiak, J., 2008. "The ordered qualitative model for credit rating transitions," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 111-130, January.
    2. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    3. Altman, Edward I. & Rijken, Herbert A., 2004. "How rating agencies achieve rating stability," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2679-2714, November.
    4. Caporale, Guglielmo Maria & Matousek, Roman & Stewart, Chris, 2012. "Ratings assignments: Lessons from international banks," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1593-1606.
    5. David F. Hendry & Carlos Santos, 2005. "Regression Models with Data-based Indicator Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(5), pages 571-595, October.
    6. Amato, Jeffery D. & Furfine, Craig H., 2004. "Are credit ratings procyclical?," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2641-2677, November.
    7. Manzoni, Katiuscia, 2004. "Modeling Eurobond credit ratings and forecasting downgrade probability," International Review of Financial Analysis, Elsevier, vol. 13(3), pages 277-300.
    8. Meyer, Paul A & Pifer, Howard W, 1970. "Prediction of Bank Failures," Journal of Finance, American Finance Association, vol. 25(4), pages 853-868, September.
    9. Carmen M. Reinhart, 2002. "An Introduction," World Bank Economic Review, World Bank Group, vol. 16(2), pages 149-150, August.
    10. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    11. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    12. James Kolari & Michele Caputo & Drew Wagner, 1996. "Trait Recognition: An Alternative Approach to Early Warning Systems in Commercial Banking," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 23(9-10), pages 1415-1434, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincenzo D’Apice & Giovanni Ferri & Punziana Lacitignola, 2016. "Rating Performance and Bank Business Models: Is There a Change with the 2007–2009 Crisis?," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 2(3), pages 385-420, November.
    2. Salvador, Carlos & Pastor, Jose Manuel & Fernández de Guevara, Juan, 2014. "Impact of the subprime crisis on bank ratings: The effect of the hardening of rating policies and worsening of solvency," Journal of Financial Stability, Elsevier, vol. 11(C), pages 13-31.
    3. Alexander Karminsky & Richard Hainsworth & Vasily Solodkov, 2013. "Arm’s Length Method for Comparing Rating Scales," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 3(2), pages 114-135, December.
    4. Indermit S Gill & Naotaka Sugawara & Juan Zalduendo, 2014. "The Center Still Holds: Financial Integration in the Euro Area," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 56(3), pages 351-375, September.
    5. Ozturk, Huseyin & Namli, Ersin & Erdal, Halil Ibrahim, 2016. "Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample," Economic Modelling, Elsevier, vol. 54(C), pages 469-478.
    6. Themistokles Lazarides & Evaggelos Drimpetas, 2016. "Defining the factors of Fitch rankings in the European banking sector," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 6(2), pages 315-339, August.
    7. Volkova, Olga & Lvova, Irina, 2016. "Effect of financial indicators on international ratings of russian banks," Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 177-195, February.
    8. Shen, Chung-Hua & Huang, Yu-Li & Hasan, Iftekhar, 2012. "Asymmetric benchmarking in bank credit rating," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(1), pages 171-193.

    More about this item

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:reviec:v:19:y:2011:i:1:p:189-206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0965-7576 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.