IDEAS home Printed from https://ideas.repec.org/a/bla/opecrv/v30y2006i3p151-169.html
   My bibliography  Save this article

Forecasting volatility for options valuation

Author

Listed:
  • Mahdjouba Belaifa
  • Kimio Morimune

Abstract

The petroleum sector plays a neuralgic role in the basement of world economies, and market actors (producers, intermediates, as well as consumers) are continuously subjected to the dynamics of unstable oil market. Huge amounts are being invested along the production chain to make one barrel of crude oil available to the end user. Adding to that are the effect of geopolitical dynamics as well as geological risks as expressed in terms of low chances of successful discoveries. In addition, fiscal regimes and regulations, technology and environmental concerns are also among some of the major factors that contribute to the substantial risk in the oil industry and render the market structure vulnerable to crises. The management of these vulnerabilities require modern tools to reduce risk to a certain level, which unfortunately is a non‐zero value. The aim of this paper is, therefore, to provide a modern technique to capture the oil price stochastic volatility that can be implemented to value the exposure of an investor, a company, a corporate or a Government. The paper first analyses the regional dependence on oil prices, through a historical perspective and then looks at the evolution of pricing environment since the large price jumps of the 1970s. The main causes of oil prices volatility are treated in the third part of the paper. The rest of the article deals with volatility models and forecasts used in risk management, with an implication for pricing derivatives.

Suggested Citation

  • Mahdjouba Belaifa & Kimio Morimune, 2006. "Forecasting volatility for options valuation," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 30(3), pages 151-169, September.
  • Handle: RePEc:bla:opecrv:v:30:y:2006:i:3:p:151-169
    DOI: 10.1111/j.1468-0076.2006.00166.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-0076.2006.00166.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-0076.2006.00166.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Kuang‐Liang Chang & Chi‐Wei He, 2010. "Does The Magnitude Of The Effect Of Inflation Uncertainty On Output Growth Depend On The Level Of Inflation?," Manchester School, University of Manchester, vol. 78(2), pages 126-148, March.
    3. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    4. Tuysuz, Sukriye, 2007. "The asymmetric impact of macroeconomic announcements on U.S. Government bond rate level and volatility," MPRA Paper 5381, University Library of Munich, Germany.
    5. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    6. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    7. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    8. Belke, Ansgar & Gokus, Christian, 2011. "Volatility Patterns of CDS, Bond and Stock Markets Before and During the Financial Crisis – Evidence from Major Financial Institutions," Ruhr Economic Papers 243, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    10. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.
    11. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    12. Xu, Libo & Serletis, Apostolos, 2016. "Monetary and fiscal policy switching with time-varying volatilities," Economics Letters, Elsevier, vol. 145(C), pages 202-205.
    13. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    14. Syriopoulos, Theodore, 2006. "Risk and return implications from investing in emerging European stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(3), pages 283-299, July.
    15. Ming-Yuan Leon Li & Chun-Nan Chen, 2010. "Examining the interrelation dynamics between option and stock markets using the Markov-switching vector error correction model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(7), pages 1173-1191.
    16. Abdessamad Ouchen, 2022. "Is the ESG portfolio less turbulent than a market benchmark portfolio?," Risk Management, Palgrave Macmillan, vol. 24(1), pages 1-33, March.
    17. Błażej Mazur & Mateusz Pipień, 2012. "On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 95-116, June.
    18. Mustafa Caglayan & Ozge Kandemir & Kostas Mouratidis, 2011. "Real effects of inflation uncertainty in the US," Working Papers 2011002, The University of Sheffield, Department of Economics, revised Feb 2015.
    19. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    20. Regnard, Nazim & Zakoïan, Jean-Michel, 2011. "A conditionally heteroskedastic model with time-varying coefficients for daily gas spot prices," Energy Economics, Elsevier, vol. 33(6), pages 1240-1251.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:opecrv:v:30:y:2006:i:3:p:151-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291753-0237 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.