IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v171y2008i2p395-405.html
   My bibliography  Save this article

A new approach to investigating spatial variations of disease

Author

Listed:
  • Louise Choo
  • Stephen G. Walker

Abstract

Summary. For rare diseases the observed disease count may exhibit extra Poisson variability, particularly in areas with low or sparse populations. Hence the variance of the estimates of disease risk, the standardized mortality ratios, may be highly unstable. This overdispersion must be taken into account otherwise subsequent maps based on standardized mortality ratios will be misleading and, rather than displaying the true spatial pattern of disease risk, the most extreme values will be highlighted. Neighbouring areas tend to exhibit spatial correlation as they may share more similarities than non‐neighbouring areas. The need to address overdispersion and spatial correlation has led to the proposal of Bayesian approaches for smoothing estimates of disease risk. We propose a new model for investigating the spatial variation of disease risks in conjunction with an alternative specification for estimates of disease risk in geographical areas—the multivariate Poisson–gamma model. The main advantages of this new model lie in its simplicity and ability to account naturally for overdispersion and spatial auto‐correlation. Exact expressions for important quantities such as expectations, variances and covariances can be easily derived.

Suggested Citation

  • Louise Choo & Stephen G. Walker, 2008. "A new approach to investigating spatial variations of disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 395-405, April.
  • Handle: RePEc:bla:jorssa:v:171:y:2008:i:2:p:395-405
    DOI: 10.1111/j.1467-985X.2007.00503.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2007.00503.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2007.00503.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roger J. Marshall, 1991. "A Review of Methods for the Statistical Analysis of Spatial Patterns of Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(3), pages 421-441, May.
    2. Roger J. Marshall, 1991. "Mapping Disease and Mortality Rates Using Empirical Bayes Estimators," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(2), pages 283-294, June.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I Gede Nyoman Mindra Jaya & Henk Folmer & Johan Lundberg, 2024. "A joint Bayesian spatiotemporal risk prediction model of COVID-19 incidence, IC admission, and death with application to Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 72(1), pages 107-140, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renato Assunção & Carl Schmertmann & Joseph Potter & Suzana Cavenaghi, 2005. "Empirical bayes estimation of demographic schedules for small areas," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 537-558, August.
    2. Biggeri, A. & Dreassi, E. & Lagazio, C. & Bohning, D., 2003. "A transitional non-parametric maximum pseudo-likelihood estimator for disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 617-629, January.
    3. Peter Congdon, 1997. "Multilevel and Clustering Analysis of Health Outcomes in Small Areas," European Journal of Population, Springer;European Association for Population Studies, vol. 13(4), pages 305-338, December.
    4. Ying C. MacNab & Patrick J. Farrell & Paul Gustafson & Sijin Wen, 2004. "Estimation in Bayesian Disease Mapping," Biometrics, The International Biometric Society, vol. 60(4), pages 865-873, December.
    5. Nushrat Nazia & Zahid Ahmad Butt & Melanie Lyn Bedard & Wang-Choi Tang & Hibah Sehar & Jane Law, 2022. "Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review," IJERPH, MDPI, vol. 19(14), pages 1-28, July.
    6. Miklos Arato, N. & Dryden, Ian L. & Taylor, Charles C., 2006. "Hierarchical Bayesian modelling of spatial age-dependent mortality," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1347-1363, November.
    7. Luc Anselin & Sanjeev Sridharan & Susan Gholston, 2007. "Using Exploratory Spatial Data Analysis to Leverage Social Indicator Databases: The Discovery of Interesting Patterns," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 82(2), pages 287-309, June.
    8. Vinícius Diniz Mayrink & Renato Valladares Panaro & Marcelo Azevedo Costa, 2021. "Structural equation modeling with time dependence: an application comparing Brazilian energy distributors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 353-383, June.
    9. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    10. Thomas C. McHale & Claudia M. Romero-Vivas & Claudio Fronterre & Pedro Arango-Padilla & Naomi R. Waterlow & Chad D. Nix & Andrew K. Falconar & Jorge Cano, 2019. "Spatiotemporal Heterogeneity in the Distribution of Chikungunya and Zika Virus Case Incidences during their 2014 to 2016 Epidemics in Barranquilla, Colombia," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
    11. Peter Congdon, 2010. "A multiple indicator, multiple cause method for representing social capital with an application to psychological distress," Journal of Geographical Systems, Springer, vol. 12(1), pages 1-23, March.
    12. Peter Congdon, 2014. "Estimating life expectancies for US small areas: a regression framework," Journal of Geographical Systems, Springer, vol. 16(1), pages 1-18, January.
    13. Shota Homma & Daisuke Murakami & Shinya Hosokawa & Koji Kanefuji, 2025. "Introduction risk of fire ants through container cargo in ports: Data integration approach considering a logistic network," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-15, February.
    14. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    15. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    16. Dani Gamerman & Ajax R. B. Moreira, 2015. "Multivariate Spatial Regression Models," Discussion Papers 0116, Instituto de Pesquisa Econômica Aplicada - IPEA.
    17. Jamie M. Madden & Simon More & Conor Teljeur & Justin Gleeson & Cathal Walsh & Guy McGrath, 2021. "Population Mobility Trends, Deprivation Index and the Spatio-Temporal Spread of Coronavirus Disease 2019 in Ireland," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
    18. Peter Congdon, 2020. "Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    19. Maciej Beręsewicz & Dagmara Nikulin, 2018. "Informal employment in Poland: an empirical spatial analysis," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(3), pages 338-355, July.
    20. Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:171:y:2008:i:2:p:395-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.