IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v28y2024i3p556-572.html
   My bibliography  Save this article

Environmental performance of eco‐design strategies applied to the building sector

Author

Listed:
  • Kikki Lambrecht Ipsen
  • Massimo Pizzol
  • Morten Birkved
  • Ben Amor

Abstract

The application of eco‐design principles in the building sector is considered a promising way to mitigate its substantial environmental impacts. However, quantitative evidence for this mitigation potential is lacking. The objective of this study was to quantify the environmental performance of diverse eco‐design strategies when applied to the building sector. A macroscale model capable of simulating the future demand for housing and related material flows within the urban building stock was developed based on an existing building stock model. These material flows were used to build inventories for a consequential life cycle assessment and, in turn, to quantify the potential environmental consequences of introducing eco‐design strategies in the building sector, assessed across 16 impact categories. Model outputs have a high level of uncertainty but are still useful for decision‐making, given the model's simplicity and transparency. The main results show that impact reductions can be obtained from specific uses of wood and wooden products, for example, when used for the walls in high‐rise buildings, whereas using hempcrete for partition walls increases the impact. Although the use of adaptability or disassembly strategies can reduce impacts, this pay‐off can only be obtained after a long period of implementation. In summary, the present study provides new quantitative insights into the ability of eco‐design strategies to mitigate environmental impacts in the building sector.

Suggested Citation

  • Kikki Lambrecht Ipsen & Massimo Pizzol & Morten Birkved & Ben Amor, 2024. "Environmental performance of eco‐design strategies applied to the building sector," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 556-572, June.
  • Handle: RePEc:bla:inecol:v:28:y:2024:i:3:p:556-572
    DOI: 10.1111/jiec.13465
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13465
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
    2. Yannick Lessard & Chirjiv Anand & Pierre Blanchet & Caroline Frenette & Ben Amor, 2018. "LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1105-1116, October.
    3. Sandberg, Nina Holck & Næss, Jan Sandstad & Brattebø, Helge & Andresen, Inger & Gustavsen, Arild, 2021. "Large potentials for energy saving and greenhouse gas emission reductions from large-scale deployment of zero emission building technologies in a national building stock," Energy Policy, Elsevier, vol. 152(C).
    4. Robert Gerth & Albert Boqvist & Marcus Bjelkemyr & Bengt Lindberg, 2013. "Design for construction: utilizing production experiences in development," Construction Management and Economics, Taylor & Francis Journals, vol. 31(2), pages 135-150, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    2. Qingshi Tu & Edgar G. Hertwich, 2022. "A mechanistic model to link technical specifications of vehicle end‐of‐life treatment with the potential of closed‐loop recycling of post‐consumer scrap alloys," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 704-717, June.
    3. Craig Langston & Weiwei Zhang, 2021. "DfMA: Towards an Integrated Strategy for a More Productive and Sustainable Construction Industry in Australia," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    4. Mojtaba Babaelahi & Ali Kazemi, 2025. "Optimal energy system configuration for zero energy buildings using hybrid thermal-photovoltaic solar collector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 11047-11062, May.
    5. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    6. Zhongyao Cai & Xiaohui Yang & Huaxing Lin & Xinyu Yang & Ping Jiang, 2022. "Study on the Co-Benefits of Air Pollution Control and Carbon Reduction in the Yellow River Basin: An Assessment Based on a Spatial Econometric Model," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    7. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    8. Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
    9. Zhuyuan Xue & Hongbo Liu & Qinxiao Zhang & Jingxin Wang & Jilin Fan & Xia Zhou, 2019. "The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    10. Julien Pedneault & Guillaume Majeau‐Bettez & Stefan Pauliuk & Manuele Margni, 2022. "Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1728-1746, October.
    11. Mieke Oostra & Nelleke Nelis, 2022. "Concerns of Owner-Occupants in Realising the Aims of Energy Transition," Urban Planning, Cogitatio Press, vol. 7(2), pages 45-57.
    12. Ke Chen & Weisheng Lu, 2018. "Design for Manufacture and Assembly Oriented Design Approach to a Curtain Wall System: A Case Study of a Commercial Building in Wuhan, China," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    13. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    14. Aslam, Naveed & Yang, Wanping & Arslan, Muhammad & Ashraf, Bilal, 2024. "Environmental regulations as a solution for energy security risk and energy gap: Evidence from highly energy intensive economies," Applied Energy, Elsevier, vol. 374(C).
    15. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Huakun Huang & Dingrong Dai & Longtao Guo & Sihui Xue & Huijun Wu, 2023. "AI and Big Data-Empowered Low-Carbon Buildings: Challenges and Prospects," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    17. Marina Marinelli & Ashwini Konanahalli & Rupesh Dwarapudi & Mukund Janardhanan, 2022. "Assessment of Barriers and Strategies for the Enhancement of Off-Site Construction in India: An ISM Approach," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    18. Cremer, Leo & Weber, Christine, 2022. "Deep energy retrofits: How effective and robust are policy instruments?," Energy Policy, Elsevier, vol. 170(C).
    19. Christine Roxanne Hung & Paul Kishimoto & Volker Krey & Anders Hammer Strømman & Guillaume Majeau‐Bettez, 2022. "ECOPT2: An adaptable life cycle assessment model for the environmentally constrained optimization of prospective technology transitions," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1616-1630, October.
    20. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:28:y:2024:i:3:p:556-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.