IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6595-d826173.html
   My bibliography  Save this article

Assessment of Barriers and Strategies for the Enhancement of Off-Site Construction in India: An ISM Approach

Author

Listed:
  • Marina Marinelli

    (School of Engineering, University of Leicester, Leicester LE1 7RH, UK)

  • Ashwini Konanahalli

    (School of Computing, Engineering and Physical Sciences, University of West of Scotland, Paisley PA1 2BE, UK)

  • Rupesh Dwarapudi

    (School of Engineering, University of Leicester, Leicester LE1 7RH, UK)

  • Mukund Janardhanan

    (School of Engineering, University of Leicester, Leicester LE1 7RH, UK)

Abstract

The tremendous urbanization pace of India calls for higher efficiency in housing development, currently typified by low productivity and poor sustainability performance. Although off-site construction (OSC) is a method of widely acknowledged efficiency, its current uptake in India is very low, and the factors hindering its wider adaptation have not been comprehensively researched. This paper employs interviews with experts, a questionnaire survey and the interpretive structural modelling (ISM) technique to achieve the following objectives: first, to reveal which factors are perceived as top barriers for OSC implementation in India; second, to develop a hierarchical model presenting the causality between these factors; and third, to propose the initiatives required for barriers with high impact on other barriers to be most efficiently tackled. The survey findings show that the barriers perceived as most important from the professionals’ point of view are design inflexibility, difficulties in storage and transportation, supply chain weaknesses, initial capital requirements and lack of skills. The ISM reveals, though, that the underlying causes for these barriers lie with factors such as public procurement regulations and the fragmentation of the sector. Therefore, the latter are the barriers that need to be targeted in priority, as per the suggested strategies.

Suggested Citation

  • Marina Marinelli & Ashwini Konanahalli & Rupesh Dwarapudi & Mukund Janardhanan, 2022. "Assessment of Barriers and Strategies for the Enhancement of Off-Site Construction in India: An ISM Approach," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6595-:d:826173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kunal K. Ganguly & Debabrata Das, 2020. "Analysing the barriers in Indian stone crushing industries: an ISM and fuzzy AHP approach," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 12(3), pages 242-264.
    2. Chris Goodier & Alistair Gibb, 2007. "Future opportunities for offsite in the UK," Construction Management and Economics, Taylor & Francis Journals, vol. 25(6), pages 585-595.
    3. Sushil, 2018. "How to check correctness of total interpretive structural models?," Annals of Operations Research, Springer, vol. 270(1), pages 473-487, November.
    4. Kumar Neeraj Jha & M. N. Devaya, 2008. "Modelling the risks faced by Indian construction companies assessing international projects," Construction Management and Economics, Taylor & Francis Journals, vol. 26(4), pages 337-348.
    5. Wei Pan & Robert Sidwell, 2011. "Demystifying the cost barriers to offsite construction in the UK," Construction Management and Economics, Taylor & Francis Journals, vol. 29(11), pages 1081-1099.
    6. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2016. "Economic and environmental effectiveness of renewable energy policy instruments: Best practices from India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 487-498.
    7. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    8. Robert Gerth & Albert Boqvist & Marcus Bjelkemyr & Bengt Lindberg, 2013. "Design for construction: utilizing production experiences in development," Construction Management and Economics, Taylor & Francis Journals, vol. 31(2), pages 135-150, February.
    9. Lara Jaillon & Chi-Sun Poon, 2010. "Design issues of using prefabrication in Hong Kong building construction," Construction Management and Economics, Taylor & Francis Journals, vol. 28(10), pages 1025-1042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitad Jaisue & Nipon Ketjoy & Malinee Kaewpanha & Prapita Thanarak, 2023. "The Barriers Analysis for Waste-to-Energy Project Development in Thailand: Using an Interpretive Structural Modeling Approach," Energies, MDPI, vol. 16(4), pages 1-19, February.
    2. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    2. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    3. Dandan He & Zhongfu Li & Chunlin Wu & Xin Ning, 2018. "An E-Commerce Platform for Industrialized Construction Procurement Based on BIM and Linked Data," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    4. Andrew Agapiou, 2021. "An Exploration of the Best Value Perceptions of Small Housebuilding Developers towards Offsite Construction," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    5. Yanqiu Cui & Simeng Li & Chunlu Liu & Ninghan Sun, 2020. "Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    6. Hong Xue & Shoujian Zhang & Yikun Su & Zezhou Wu, 2018. "Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    7. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    8. Zhong-Lei Wang & Hou-Cai Shen & Jian Zuo, 2019. "Risks in Prefabricated Buildings in China: Importance-Performance Analysis Approach," Sustainability, MDPI, vol. 11(12), pages 1-13, June.
    9. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    10. Sujan Piya & Ahm Shamsuzzoha & Mohammad Khadem & Nasr Al-Hinai, 2020. "Identification of Critical Factors and Their Interrelationships to Design Agile Supply Chain: Special Focus to Oil and Gas Industries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(3), pages 263-281, September.
    11. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    12. H. Mahesh Prabhu & Amit Kumar Srivastava, 2023. "CEO Transformational Leadership, Supply Chain Agility and Firm Performance: A TISM Modeling among SMEs," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(1), pages 51-65, March.
    13. Shekhar, Jai & Suri, Dhruv & Somani, Priyanshi & Lee, Stephen J. & Arora, Mahika, 2021. "Reduced renewable energy stability in India following COVID-19: Insights and key policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Chris Turner & John Oyekan & Lampros K. Stergioulas, 2021. "Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    15. Sushil, 2017. "Modified ISM/TISM Process with Simultaneous Transitivity Checks for Reducing Direct Pair Comparisons," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(4), pages 331-351, December.
    16. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    17. Madhukar Patil & M. Suresh, 2019. "Modelling the Enablers of Workforce Agility in IoT Projects: A TISM Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(2), pages 157-175, June.
    18. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    19. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    20. Abhishek Kumbhat & Sushil, 2022. "Interactive Effect of Success Factors for High-Tech Startups: Value Propositions, Target Market and Operational Excellence," International Journal of Global Business and Competitiveness, Springer, vol. 17(1), pages 73-88, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6595-:d:826173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.