IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1826-1839.html
   My bibliography  Save this article

Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis

Author

Listed:
  • Yakun Wang
  • Zeda Li
  • Scott A. Bruce

Abstract

This paper introduces a flexible and adaptive nonparametric method for estimating the association between multiple covariates and power spectra of multiple time series. The proposed approach uses a Bayesian sum of trees model to capture complex dependencies and interactions between covariates and the power spectrum, which are often observed in studies of biomedical time series. Local power spectra corresponding to terminal nodes within trees are estimated nonparametrically using Bayesian penalized linear splines. The trees are considered to be random and fit using a Bayesian backfitting Markov chain Monte Carlo (MCMC) algorithm that sequentially considers tree modifications via reversible‐jump MCMC techniques. For high‐dimensional covariates, a sparsity‐inducing Dirichlet hyperprior on tree splitting proportions is considered, which provides sparse estimation of covariate effects and efficient variable selection. By averaging over the posterior distribution of trees, the proposed method can recover both smooth and abrupt changes in the power spectrum across multiple covariates. Empirical performance is evaluated via simulations to demonstrate the proposed method's ability to accurately recover complex relationships and interactions. The proposed methodology is used to study gait maturation in young children by evaluating age‐related changes in power spectra of stride interval time series in the presence of other covariates.

Suggested Citation

  • Yakun Wang & Zeda Li & Scott A. Bruce, 2023. "Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1826-1839, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1826-1839
    DOI: 10.1111/biom.13763
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13763
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Discussion Papers ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Reprints ISBA 2016025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Robert T. Krafty, 2016. "Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 435-450, July.
    4. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    5. R D Payne & N Guha & Y Ding & B K Mallick, 2020. "A conditional density estimation partition model using logistic Gaussian processes," Biometrika, Biometrika Trust, vol. 107(1), pages 173-190.
    6. Gail Blattenberger & Richard Fowles, 2017. "Treed Avalanche Forecasting: Mitigating Avalanche Danger Utilizing Bayesian Additive Regression Trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 165-180, March.
    7. Robert T. Krafty & Ori Rosen & David S. Stoffer & Daniel J. Buysse & Martica H. Hall, 2017. "Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1405-1416, October.
    8. Scott A. Bruce & Martica H. Hall & Daniel J. Buysse & Robert T. Krafty, 2018. "Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series," Biometrics, The International Biometric Society, vol. 74(1), pages 260-269, March.
    9. Katsiaryna Schwarz & Tatyana Krivobokova, 2016. "A unified framework for spline estimators," Biometrika, Biometrika Trust, vol. 103(1), pages 121-131.
    10. Antonio R. Linero & Yun Yang, 2018. "Bayesian regression tree ensembles that adapt to smoothness and sparsity," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1087-1110, November.
    11. Ori Rosen & Sally Wood & David S. Stoffer, 2012. "AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1575-1589, December.
    12. Robert T. Krafty & Martica Hall & Wensheng Guo, 2011. "Functional mixed effects spectral analysis," Biometrika, Biometrika Trust, vol. 98(3), pages 583-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Scott A. Bruce & Martica H. Hall & Daniel J. Buysse & Robert T. Krafty, 2018. "Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series," Biometrics, The International Biometric Society, vol. 74(1), pages 260-269, March.
    3. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    4. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    5. Hu, Zhixiong & Prado, Raquel, 2023. "Fast Bayesian inference on spectral analysis of multivariate stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    6. Chau, Van Vinh & von Sachs, Rainer, 2017. "Positive-Definite Multivariate Spectral Estimation: A Geometric Wavelet Approach," LIDAM Discussion Papers ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Chau, Van Vinh & Ombao, Hernando & von Sachs, Rainer, 2017. "Data depth and rank-based tests for covariance and spectral density matrices," LIDAM Discussion Papers ISBA 2017019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    9. Krebs, Johannes & Rademacher, Daniel & von Sachs, Rainer, 2022. "Statistical inference for intrinsic wavelet estimators of SPD covariance matrices in a log-Euclidean manifold," LIDAM Discussion Papers ISBA 2022004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Davide Pigoli & Pantelis Z. Hadjipantelis & John S. Coleman & John A. D. Aston, 2018. "The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1103-1145, November.
    11. Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.
    12. Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
    13. Ruairi C. Robertson & Thaddeus J. Edens & Lynnea Carr & Kuda Mutasa & Ethan K. Gough & Ceri Evans & Hyun Min Geum & Iman Baharmand & Sandeep K. Gill & Robert Ntozini & Laura E. Smith & Bernard Chasekw, 2023. "The gut microbiome and early-life growth in a population with high prevalence of stunting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Leandro Andrián & Oscar Mauricio Valencia, 2023. "Past the Tipping Point? Assessing Debt Overhang in Latin America and the Caribbean," IDB Publications (Book Chapters), in: Andrew Powell & Oscar Mauricio Valencia (ed.), Dealing with Debt, edition 1, chapter 8, pages 183-196, Inter-American Development Bank.
    15. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    16. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    17. Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jun 2023.
    18. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
    19. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    20. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1826-1839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.