IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p451-464.html
   My bibliography  Save this article

The impact of misclassification on covariate‐adaptive randomized clinical trials

Author

Listed:
  • Tong Wang
  • Wei Ma

Abstract

Covariate‐adaptive randomization (CAR) is widely used in clinical trials to balance treatment allocation over covariates. Over the past decade, significant progress has been made on the theoretical properties of covariate‐adaptive design and associated inference. However, most results are established under the assumption that the covariates are correctly measured. In practice, measurement error is inevitable, resulting in misclassification for discrete covariates. When covariate misclassification is present in a clinical trial conducted using CAR, the impact is twofold: it impairs the intended covariate balance, and raises concerns over the validity of test procedures. In this paper, we consider the impact of misclassification on covariate‐adaptive randomized trials from the perspectives of both design and inference. We derive the asymptotic normality, and thereby the convergence rate, of the imbalance of the true covariates for a general family of covariate‐adaptive randomization methods, and show that a superior covariate balance can still be attained compared to complete randomization. We also show that the two sample t‐test is conservative, with a reduced Type I error, but that this can be corrected using a bootstrap method. Moreover, if the misclassified covariates are adjusted in the model used for analysis, the test maintains its nominal Type I error, with an increased power. Our results support the use of covariate‐adaptive randomization in clinical trials, even when the covariates are subject to misclassification.

Suggested Citation

  • Tong Wang & Wei Ma, 2021. "The impact of misclassification on covariate‐adaptive randomized clinical trials," Biometrics, The International Biometric Society, vol. 77(2), pages 451-464, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:451-464
    DOI: 10.1111/biom.13308
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13308
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    2. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    3. Forsythe, Alan B., 1987. "Validity and power of tests when groups have been balanced for prognostic factors," Computational Statistics & Data Analysis, Elsevier, vol. 5(3), pages 193-200.
    4. Jun Shao & Xinxin Yu & Bob Zhong, 2010. "A theory for testing hypotheses under covariate-adaptive randomization," Biometrika, Biometrika Trust, vol. 97(2), pages 347-360.
    5. Wei Ma & Feifang Hu & Lixin Zhang, 2015. "Testing Hypotheses of Covariate-Adaptive Randomized Clinical Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 669-680, June.
    6. Jun Shao & Xinxin Yu, 2013. "Validity of Tests under Covariate-Adaptive Biased Coin Randomization and Generalized Linear Models," Biometrics, The International Biometric Society, vol. 69(4), pages 960-969, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujia Gu & Hanzhong Liu & Wei Ma, 2023. "Regression‐based multiple treatment effect estimation under covariate‐adaptive randomization," Biometrics, The International Biometric Society, vol. 79(4), pages 2869-2880, December.
    2. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    2. Jian, L. & Linton, O. B. & Tang, H. & Zhang, Y., 2023. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Janeway Institute Working Papers 2315, Faculty of Economics, University of Cambridge.
    3. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    4. Jian, L. & Linton, O. B. & Tang, H. & Zhang, Y., 2023. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Cambridge Working Papers in Economics 2366, Faculty of Economics, University of Cambridge.
    5. Liang Jiang & Oliver B. Linton & Haihan Tang & Yichong Zhang, 2022. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Papers 2201.13004, arXiv.org, revised Jun 2023.
    6. Ting Ye & Jun Shao, 2020. "Robust tests for treatment effect in survival analysis under covariate‐adaptive randomization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1301-1323, December.
    7. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    8. Guiteras, Raymond P. & Levine, David I. & Polley, Thomas H., 2016. "The pursuit of balance in sequential randomized trials," Development Engineering, Elsevier, vol. 1(C), pages 12-25.
    9. Yujia Gu & Hanzhong Liu & Wei Ma, 2023. "Regression‐based multiple treatment effect estimation under covariate‐adaptive randomization," Biometrics, The International Biometric Society, vol. 79(4), pages 2869-2880, December.
    10. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    11. Simon Heß, 2017. "Randomization inference with Stata: A guide and software," Stata Journal, StataCorp LP, vol. 17(3), pages 630-651, September.
    12. Abhijit Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2017. "A Theory of Experimenters," NBER Working Papers 23867, National Bureau of Economic Research, Inc.
    13. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2024. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 542-556, March.
    14. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord-Meehan, 2022. "Revisiting the Analysis of Matched-Pair and Stratified Experiments in the Presence of Attrition," Papers 2209.11840, arXiv.org, revised Oct 2023.
    15. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    16. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    17. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    18. Cai, Yong & Rafi, Ahnaf, 2024. "On the performance of the Neyman Allocation with small pilots," Journal of Econometrics, Elsevier, vol. 242(1).
    19. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord‐Meehan, 2024. "Revisiting the analysis of matched‐pair and stratified experiments in the presence of attrition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 256-268, March.
    20. Max Tabord-Meehan, 2023. "Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:451-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.