IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p669-680.html
   My bibliography  Save this article

Testing Hypotheses of Covariate-Adaptive Randomized Clinical Trials

Author

Listed:
  • Wei Ma
  • Feifang Hu
  • Lixin Zhang

Abstract

Covariate-adaptive designs are often implemented to balance important covariates in clinical trials. However, the theoretical properties of conventional testing hypotheses are usually unknown under covariate-adaptive randomized clinical trials. In the literature, most studies are based on simulations. In this article, we provide theoretical foundation of hypothesis testing under covariate-adaptive designs based on linear models. We derive the asymptotic distributions of the test statistics of testing both treatment effects and the significance of covariates under null and alternative hypotheses. Under a large class of covariate-adaptive designs, (i) the hypothesis testing to compare treatment effects is usually conservative in terms of small Type I error; (ii) the hypothesis testing to compare treatment effects is usually more powerful than complete randomization; and (iii) the hypothesis testing for significance of covariates is still valid. The class includes most of the covariate-adaptive designs in the literature; for example, Pocock and Simon's marginal procedure, stratified permuted block design, etc. Numerical studies are also performed to assess their corresponding finite sample properties. Supplementary material for this article is available online.

Suggested Citation

  • Wei Ma & Feifang Hu & Lixin Zhang, 2015. "Testing Hypotheses of Covariate-Adaptive Randomized Clinical Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 669-680, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:669-680
    DOI: 10.1080/01621459.2014.922469
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.922469
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.922469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    2. Yujia Gu & Hanzhong Liu & Wei Ma, 2023. "Regression‐based multiple treatment effect estimation under covariate‐adaptive randomization," Biometrics, The International Biometric Society, vol. 79(4), pages 2869-2880, December.
    3. Tong Wang & Wei Ma, 2021. "The impact of misclassification on covariate‐adaptive randomized clinical trials," Biometrics, The International Biometric Society, vol. 77(2), pages 451-464, June.
    4. Liang Jiang & Oliver B. Linton & Haihan Tang & Yichong Zhang, 2022. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Papers 2201.13004, arXiv.org, revised Jun 2023.
    5. Ting Ye & Jun Shao, 2020. "Robust tests for treatment effect in survival analysis under covariate‐adaptive randomization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1301-1323, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:669-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.