IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p439-447.html
   My bibliography  Save this article

Eigenvalue significance testing for genetic association

Author

Listed:
  • Yi†Hui Zhou
  • J. S. Marron
  • Fred A. Wright

Abstract

Genotype eigenvectors are widely used as covariates for control of spurious stratification in genetic association. Significance testing for the accompanying eigenvalues has typically been based on a standard Tracy–Widom limiting distribution for the largest eigenvalue, derived under white†noise assumptions. It is known that even modest local correlation among markers inflates the largest eigenvalues, even in the absence of true stratification. In addition, a few sample eigenvalues may be extreme, creating further complications in accurate testing. We explore several methods to identify appropriate null eigenvalue thresholds, while remaining sensitive to eigenvalues corresponding to population stratification. We introduce a novel block permutation approach, designed to produce an appropriate null eigenvalue distribution by eliminating long†range genomic correlation while preserving local correlation. We also propose a fast approach based on eigenvalue distribution modeling, using a simple fit criterion and the general MarÄ enko–Pastur equation under a simple discrete eigenvalue model. Block permutation and the model†based approach work well for pure simulations and for data resampled from the 1000 Genomes project. In contrast, we find that the standard approach of computing an “effective†number of markers does not perform well. The performance of the methods is also demonstrated for a motivating example from the International Cystic Fibrosis Consortium.

Suggested Citation

  • Yi†Hui Zhou & J. S. Marron & Fred A. Wright, 2018. "Eigenvalue significance testing for genetic association," Biometrics, The International Biometric Society, vol. 74(2), pages 439-447, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:439-447
    DOI: 10.1111/biom.12767
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12767
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    2. G. Livan & S. Alfarano & E. Scalas, 2011. "The fine structure of spectral properties for random correlation matrices: an application to financial markets," Papers 1102.4076, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyang Xu & Zhonghua Liu & Jianfeng Yao, 2023. "An eigenvalue ratio approach to inferring population structure from whole genome sequencing data," Biometrics, The International Biometric Society, vol. 79(2), pages 891-902, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
    2. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    3. Chen, Jiaqi & Zhang, Yangchun & Li, Weiming & Tian, Boping, 2018. "A supplement on CLT for LSS under a large dimensional generalized spiked covariance model," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 57-65.
    4. Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
    5. Li, Zeng & Pan, Guangming & Yao, Jianfeng, 2015. "On singular value distribution of large-dimensional autocovariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 119-140.
    6. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    7. Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
    8. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    9. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    10. Matthias Raddant & Friedrich Wagner, 2017. "Transitions in the stock markets of the US, UK and Germany," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 289-297, February.
    11. Giacomo Livan & Luca Rebecchi, 2012. "Asymmetric correlation matrices: an analysis of financial data," Papers 1201.6535, arXiv.org, revised Apr 2012.
    12. Raddant, Matthias & Wagner, Friedrich, 2013. "Phase transition in the S&P stock market," Kiel Working Papers 1846, Kiel Institute for the World Economy (IfW Kiel).
    13. G. Pan & J. Gao & Y. Yang & M. Guo, 2012. "Independence Test for High Dimensional Random Vectors," Monash Econometrics and Business Statistics Working Papers 1/12, Monash University, Department of Econometrics and Business Statistics.
    14. Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
    15. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2016. "Spectral analysis of the Moore–Penrose inverse of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 160-172.
    16. Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
    17. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    18. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    19. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    20. Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005. "Large dimension forecasting models and random singular value spectra," Science & Finance (CFM) working paper archive 500066, Science & Finance, Capital Fund Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:439-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.