IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i1p33-41.html
   My bibliography  Save this article

Minimum clinically important difference in medical studies

Author

Listed:
  • A. S. Hedayat
  • Junhui Wang
  • Tu Xu

Abstract

No abstract is available for this item.

Suggested Citation

  • A. S. Hedayat & Junhui Wang & Tu Xu, 2015. "Minimum clinically important difference in medical studies," Biometrics, The International Biometric Society, vol. 71(1), pages 33-41, March.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:33-41
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12251
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    2. Wendy Leisenring & Todd Alono & Margaret Sullivan Pepe, 2000. "Comparisons of Predictive Values of Binary Medical Diagnostic Tests for Paired Designs," Biometrics, The International Biometric Society, vol. 56(2), pages 345-351, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel M. Morales & Patrick Tarwater & Indika Mallawaarachchi & Alok Kumar Dwivedi & Juan B. Figueroa-Casas, 2015. "Multinomial logistic regression approach for the evaluation of binary diagnostic test in medical research," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 203-222, June.
    2. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    3. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    4. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    5. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    6. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Xueyan Mei & Zelong Liu & Ayushi Singh & Marcia Lange & Priyanka Boddu & Jingqi Q. X. Gong & Justine Lee & Cody DeMarco & Chendi Cao & Samantha Platt & Ganesh Sivakumar & Benjamin Gross & Mingqian Hua, 2023. "Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Ashkan Zarnani & Soheila Karimi & Petr Musilek, 2019. "Quantile Regression and Clustering Models of Prediction Intervals for Weather Forecasts: A Comparative Study," Forecasting, MDPI, vol. 1(1), pages 1-20, October.
    9. Jooyong Shim & Changha Hwang & Kyungha Seok, 2014. "Composite support vector quantile regression estimation," Computational Statistics, Springer, vol. 29(6), pages 1651-1665, December.
    10. Philip Kostov & Sophia Davidova & Alistair Bailey, 2018. "Effect of family labour on output of farms in selected EU Member States: a non-parametric quantile regression approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(3), pages 367-395.
    11. Bertho Tantular & Budi Nurani Ruchjana & Yudhie Andriyana & Anneleen Verhasselt, 2023. "Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    12. Saad Bouh Regad & José Antonio Roldán-Nofuentes, 2021. "Global Hypothesis Test to Compare the Predictive Values of Diagnostic Tests Subject to a Case-Control Design," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    13. Park, Jinho, 2017. "Solution path for quantile regression with epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 205-211.
    14. Jooyong Shim & Yongtae Kim & Jangtaek Lee & Changha Hwang, 2012. "Estimating value at risk with semiparametric support vector quantile regression," Computational Statistics, Springer, vol. 27(4), pages 685-700, December.
    15. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.
    16. Park, Jinho & Kim, Jeankyung, 2011. "Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 62-70, January.
    17. Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
    18. Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    19. Yue, Yu Ryan & Rue, Håvard, 2011. "Bayesian inference for additive mixed quantile regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 84-96, January.
    20. Stromberg, Per M. & Öhrner, Erik & Brockwell, Erik & Liu, Zhaoyang, 2021. "Valuing urban green amenities with an inequality lens," Ecological Economics, Elsevier, vol. 186(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.