IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v65y2009i2p640-649.html

A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance

Author

Listed:
  • Roderick J. Little
  • Qi Long
  • Xihong Lin

Abstract

No abstract is available for this item.

Suggested Citation

  • Roderick J. Little & Qi Long & Xihong Lin, 2009. "A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance," Biometrics, The International Biometric Society, vol. 65(2), pages 640-649, June.
  • Handle: RePEc:bla:biomet:v:65:y:2009:i:2:p:640-649
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01066.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Donald B. Rubin, 1977. "Assignment to Treatment Group on the Basis of a Covariate," Journal of Educational and Behavioral Statistics, , vol. 2(1), pages 1-26, March.
    3. Yahong Peng & Roderick J. A. Little & Trivellore E. Raghunathan, 2004. "An Extended General Location Model for Causal Inferences from Data Subject to Noncompliance and Missing Values," Biometrics, The International Biometric Society, vol. 60(3), pages 598-607, September.
    4. Janevic, Mary R. & Janz, Nancy K. & Dodge, Julia A. & Lin, Xihong & Pan, Wenqin & Sinco, Brandy R. & Clark, Noreen M., 2003. "The role of choice in health education intervention trials: a review and case study," Social Science & Medicine, Elsevier, vol. 56(7), pages 1581-1594, April.
    5. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    6. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    7. Brookhart M. Alan & Schneeweiss Sebastian, 2007. "Preference-Based Instrumental Variable Methods for the Estimation of Treatment Effects: Assessing Validity and Interpreting Results," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vance, Colin & Ritter, Nolan, 2012. "The Phantom Menace of Omitted Variables. A Comment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 29(2), pages 233-238.
    2. Nolan Ritter & Colin Vance, 2011. "The Phantom Menace of Omitted Variables – A Comment," Ruhr Economic Papers 0282, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    3. Colin Vance & Nolan Ritter, 2012. "The Phantom Menace of Omitted Variables," Conflict Management and Peace Science, Peace Science Society (International), vol. 29(2), pages 233-238, April.
    4. Emmanuel Grellety & Susan Shepherd & Thomas Roederer & Mahamane L Manzo & Stéphane Doyon & Eric-Alain Ategbo & Rebecca F Grais, 2012. "Effect of Mass Supplementation with Ready-to-Use Supplementary Food during an Anticipated Nutritional Emergency," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    5. Andrew I. Friedson, 2018. "Medical Scribes as an Input in Health-Care Production: Evidence from a Randomized Experiment," American Journal of Health Economics, University of Chicago Press, vol. 4(4), pages 479-503, Fall.
    6. Qi Long & Roderick J. A. Little & Xihong Lin, 2010. "Estimating causal effects in trials involving multitreatment arms subject to non‐compliance: a Bayesian framework," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 513-531, May.
    7. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    8. Silvia Moler‐Zapata & Richard Grieve & Anirban Basu & Stephen O’Neill, 2023. "How does a local instrumental variable method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health Economics, John Wiley & Sons, Ltd., vol. 32(9), pages 2113-2126, September.
    9. Helmers, Christian & Patnam, Manasa & Rau, P. Raghavendra, 2017. "Do board interlocks increase innovation? Evidence from a corporate governance reform in India," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 51-70.
    10. Omar Galárraga & Sandra Sosa-Rubí & Aarón Salinas-Rodríguez & Sergio Sesma-Vázquez, 2010. "Health insurance for the poor: impact on catastrophic and out-of-pocket health expenditures in Mexico," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(5), pages 437-447, October.
    11. Martijn van Hasselt & Timothy Ferland & Jeremy Bray & Arnie Aldridge, 2017. "Bayesian Estimation of the Complier Average Casual Effect," UNCG Economics Working Papers 17-14, University of North Carolina at Greensboro, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Long & Roderick J. A. Little & Xihong Lin, 2010. "Estimating causal effects in trials involving multitreatment arms subject to non‐compliance: a Bayesian framework," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 513-531, May.
    2. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    3. Ertefaie Ashkan & Small Dylan & Flory James & Hennessy Sean, 2016. "Selection Bias When Using Instrumental Variable Methods to Compare Two Treatments But More Than Two Treatments Are Available," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 219-232, May.
    4. L. Altstein & G. Li, 2013. "Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model," Biometrics, The International Biometric Society, vol. 69(1), pages 52-61, March.
    5. Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    7. Steven Lehrer & Weili Ding, 2004. "Estimating Dynamic Treatment Effects from Project STAR," Econometric Society 2004 North American Summer Meetings 252, Econometric Society.
    8. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    9. Kirkebøen, Lars & Leuven, Edwin & Mogstad, Magne, 2014. "Field of Study, Earnings, and Self-Selection," Memorandum 29/2014, Oslo University, Department of Economics.
    10. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    11. Michael R.M. Abrigo & Timothy J. Halliday & Teresa Molina, 2022. "Expanding health insurance for the elderly of the Philippines," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 500-520, April.
    12. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    13. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    14. Toru Kitagawa, 2013. "A bootstrap test for instrument validity in heterogeneous treatment effect models," CeMMAP working papers CWP53/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    16. Zhang, Hongliang, 2016. "Identification of treatment effects under imperfect matching with an application to Chinese elite schools," Journal of Public Economics, Elsevier, vol. 142(C), pages 56-82.
    17. Esfandiar Maasoumi & Daniel L. Millimet & Dipanwita Sarkar, 2009. "Who Benefits from Marriage?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 1-33, February.
    18. Sönke Hendrik Matthewes & Guglielmo Ventura, 2022. "On Track to Success? Returns to vocational education against different alternatives," CVER Research Papers 038, Centre for Vocational Education Research.
    19. Mogstad, Magne & Torgovitsky, Alexander, 2024. "Instrumental variables with unobserved heterogeneity in treatment effects," Handbook of Labor Economics,, Elsevier.
    20. Jaap Abbring & Gerard Van Den Berg, 2005. "Social experiments and instrumental variables with duration outcomes," IFS Working Papers W05/19, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:2:p:640-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.